
www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013

DESIGN AND IMPLEMENTATION OF A NATIVE
MOBILE MULTIMEDIA LEARNING

APPLICATION FRAMEWORK ON ANDROID
PLATFORM

By

KIEMUTE OYIBO (B.Eng. Electrical/Electronics)

 Supervised by: Prof. Mohamed Hamada

Masters Thesis

Presented to the Department of Computer Science at the

African University of Science and Technology
In Partial Fulfillment of the

 Requirements for the Award of

MASTERS OF SCIENCE DEGREE IN COMPUTER SCIENCE

 African University of Science and Technology, Abuja – Nigeria

 May 2013

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page i

Certification

AFRICAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, ABUJA – NIGERIA
DEPARTMENT OF COMPUTER SCIENCE

This is to certify that the work described in this thesis entitled Design and Implementation of a
Native Mobile Multimedia Learning Application Framework on Android Platform

By

KIEMUTE OYIBO (40233)

Was carried out in the Department of Computer Science under the supervision of:

 Prof. Mohamed Hamada – Supervisor

 Date__________________________

 Prof. Mamodou Traore – Head of Department

 Date__________________________

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page ii

Dedication

I dedicate this work to the Almighty God,
Who gave me the wisdom and strength to start and

Complete this thesis, and to my late step grandmother
Whose tender hands first rocked the cradle, toiling night

 And day to see her grandson among the shining stars of night!

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page iii

Declaration

I, Kiemute Oyibo, the undersigned, an M.Sc. graduate student of the African University of
Science and Technology (AUST) and the author of this thesis entitled “Design and
Implementation of a Native Mobile Multimedia Learning Application Framework on Android
Platform,” hereby solemnly declare that this thesis is an original work done and prepared by me
under the supervision of Prof. Mohamed Hamada in the Department of Computer Science,
AUST. This work has not been previously presented as the basis for the award of any degree,
diploma or similar title at this or any other university. The materials borrowed from other sources
and included in my thesis have been properly acknowledged.

_____________________ ____________

 Student’s Signature Date

	

	

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page iv

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisor Prof. Mohamed
Hamada of the University of Aizu, Japan and African University of Science and Technology,
Abuja, who gave me the motivation and impetus to kick-start this work, and guided me all the
way. I would also like to thank the Head of Department of Computer Science Prof. Mamodou
Traore of Blaise Pascal University, France and African University of Science and Technology,
Abuja, and Dr. Kola Babalola of Computer Science, African University of Science and
Technology, Abuja, for their academic and moral support.

My gratitude also goes to Prof. Wole Soboyejo, President and Provost of African University of
Science and Technology, Abuja, as well as the entire staff of the University for their
administrative support and encouragement. I would also like to thank specially the Petroleum
Technology Development Fund (PTDF) for the postgraduate scholarship award, without which
this thesis would not have been possible.

In the same vein, I would like to say a big Thank You to my fellow Computer Science students,
Ph.D. and M.Sc. alike, who gave me support in one way or the other, namely, Arreytambe Tabot,
Bright Ighoroje, Doyin Adegoke, Obaro Odiete, Hajara Abdulwahab, Yusuf Sahabi, Patrick
Kalamula, Eustace Ebhothemen, Nila, Chongwe, Clement David, Emmanuel Onu, Emamurho
Ugherughe, Ali Gombe and others whom I am unable to mention here.

Finally, I would like to thank my mother and father Mr. Joseph Esivwename Oyibo and Mrs.
Victoria Oyibo, and my siblings—Mamede, Akpovi, Ese, Tobore, Rugba, Ufuoma and Eguolo—
for the unflinching support, ranging from moral to financial.

Thank you, One. Thank you, All!

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page v

Abstract

Internet connectivity is one of the fundamental requirements for a successful mobile learning
environment. However, within the context of Africa, availability and access, let alone cost, still
pose a great challenge in higher education, especially in distance learning. Consequently, there
arises a dire need for a native mobile learning application framework that would serve as an
alternative to web-based learning environments in localized contexts such as Africa, where the
problems of internet connectivity and bandwidth remain untackled. However, little body of
knowledge exists on how such native application frameworks, which leverage the mobile
device’s underlying hardware resources and rich user interfaces (UIs) in offering a heightened
learning user experience (UX), can be designed and implemented. As a result, this thesis sets out
to bridge this gap by proposing a Native Mobile Multimedia Learning Application (NMMLA)
Framework, implemented on the Android platform by using a systematic approach we called
“Content Flow Algorithm Tree,” which can be leveraged by mobile learning application
developers in developing native applications for various higher education courses, especially in
science and engineering. The framework is a one-page-setup and do-it-yourself toolkit and
library that will facilitate the development of NMMLAs by reducing deployment time or time to
market. Basically, the framework supports five (5) types of multimedia learning content—
images, Hypertext Markup Language (HTML), audio, video and simulation—aimed at meeting
the different needs of learners with different learning preferences. The framework provides a
number of key features, which include theme, course, quiz and simulation menus; listview and
tabview render modes; and Search and Help utilities. This work will benefit researchers and
stakeholders in the m-learning field, especially Higher Education Institutions (HEIs), training
and learning organizations. It will also benefit multimedia learning content developers and
providers in general and on the Android platform in particular by preventing them from
reinventing the wheel. Above all, it will benefit teachers, students and workers, especially
distance learners, in the pursuit of life-long formal and informal learning, as they will be able to
learn anywhere and anytime without internet connectivity and limited bandwidth being a barrier.

Keywords: mobile learning; multimedia content; learning component; learning module; reusable
learning object, native mobile application; mobile learning framework; Android platform

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page vi

Table of Contents

 Page

Certification .. I

Dedication ... II

Declaration... III

Acknowledgements ... III

Abstract ... V

Table of Contents .. VI

List of Figures .. XII

List of Tables .. XIII

Acronyms .. XIV

Chapter 1 ... 1

Introduction ... 1

1.1 Background ... 4
1.1.1 Contextualized M-Learning .. 4
1.1.2 Mobile Devices and Application Development .. 5

1.1.2.1 Mobile Development Concerns .. 5
1.1.2.2 Screen Sizes, Resolutions and Densities ... 6

1.1.3 Theory of Multimedia Learning .. 6
1.1.4 Learning Style Models .. 8

1.1.4.1 Neil Fleming's VAK/VARK Model ... 8
1.1.4.1.1 Visual Learners ... 8
1.1.4.1.2 Auditory Learners ... 8
1.1.4.1.3 Tactile/Kinesthetic Learners ... 8

1.1.4.2 David Kolb's Learning Styles Model .. 8

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page vii

1.1.4.2.1 Converger .. 9
1.1.4.2.2 Divergers ... 9

 1.1.4.2.3 Assimilators .. 9
 1.1.4.2.4 Accommodators .. 9

1.1.5 Framework Overview ... 9
1.1.5.1 Multimedia Support .. 9
1.1.5.2 Framework Use Case Diagram ... 11
1.1.5.3 Framework Model View Controller.. 14

1.1.5.3.1 Model .. 14
1.1.5.3.2 Controller .. 16

1.1.5.3.2.1 Course Loader .. 17
 1.1.5.3.2.2 Component Router ... 17

1.1.5.3.2.3 Module/Item Dispatchers ... 17
 1.1.5.3.2.4 Atomicfile Handlers ... 18
 1.1.5.3.2.5 Quiz Handlers .. 18

1.1.5.3.3 View .. 18

1.2 Aims And Objectives .. 18

1.3 Motivation for Choosing Native Application and Android Platform 19

1.4 Research Questions ... 20

1.5 Thesis Structure .. 21

1.6 Expected Contributions ... 21

Chapter 2 ... 22

Literature Review ... 22

2.1 Overview of Software Framework ... 22
2.1.1 Features of a Framework .. 23
2.1.2 Purpose for a Framework .. 23

2.1.2.1 Advantages of Using a Framework ... 24
2.1.2.2 Disadvantages of Using a Framework .. 24

2.2 Mobile Application Frameworks ... 25
2.2.1 Android Application Framework .. 25
2.2.2 Rhodes Framework ... 27
2.2.3 Open Mobile IS ... 28
2.2.4 PhoneGap .. 28

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page viii

2.3 Multimedia Learning Frameworks And Environments .. 29

2.4 Learning Management Systems .. 32
2.4.1 Moodle .. 32
2.4.2 Blackboard Mobile Learn ... 33

2.5 NMMLA Framework .. 33

Chapter 3 ... 34

Research Methodology ... 34

3.1 Framework Requirements .. 34

3.2 Spiral Modelling Approach.. 35

3.3 UML Diagrams .. 36
3.3.1 Use Case Diagram... 36
3.3.2 Technical Class Diagrams ... 36
3.3.3 Activity Diagram .. 37

3.4 Modelling View Controller .. 37
3.4.1 Model .. 37

3.4.1.1 Framework Data Model .. 38
3.4.1.2 Module and Quiz Data Models ... 39

3.4.2 View .. 40
3.4.3 Controller .. 41

Chapter 4 ... 42

Framework Implementation .. 42

4.1 Framework Packages .. 43
4.1.1 Root Package ... 44
4.1.2 DataModel.. 44
4.1.3 HomePage .. 44
4.1.4 TabFile ... 44
4.1.5 ListModule ... 44
4.1.6 TabModule ... 44
4.1.7 Evaluate .. 44
4.1.8 Search ... 45
4.1.9 Util ... 45

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page ix

4.2 Framework Overview Schematic ... 45

4.3 Framework Implementation Activity Diagram .. 45

4.4 NMMLA Framework Implementation Algorithm ... 45
4.4.1 HomePageFragmentActivity .. 49
4.4.2 TabFileFragmentActivity ... 49
4.4.3 TabModuleFragmentActivity .. 50
4.4.4 ListModuleFragmentActivity .. 50
4.4.5 Evaluation Activities .. 51

4.5 Key Framework APIs .. 52

4.6 Key Setupactivity’s Data Models and Constructors .. 52

Chapter 5 ... 54

Presentation and Discussion of Results ... 54

5.1 Framework Key Features .. 54
5.1.1 About.. 54
5.1.2 Course Menu .. 54
5.1.3 Theme Menu .. 54
5.1.4 Quiz Menu ... 54
5.1.5 Sim Menu ... 55
5.1.6 Search ... 55
5.1.7 Help .. 55
5.1.8 Screen Mode .. 55
5.1.8 Render Mode .. 55
5.1.9 Sequencing Capability ... 55

5.2 Instantiating the Framework ... 56
5.2.1 Setting up the Application .. 57
5.2.2 Running the Application ... 57
5.2.3 Navigating through the Application .. 59

5.2.3.1 Introduction .. 59
5.2.3.2 Learn – Doc.. 60
5.2.3.3 Learn –Video ... 61
5.2.3.4 Learn–Slide .. 62
5.2.3.5 Simulate ... 63
5.2.3.6 Evaluate .. 64
5.2.3.7 Resources ... 65

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page x

5.2.3.8 Help .. 66

Chapter 6 ... 67

Conclusion ... 67

6.1 Summary Of Framework And Key Features .. 67

6.2 Summary Of Work And Results ... 67

6.3 Contribution .. 68

6.4 Challenges ... 68

6.5 Future Work .. 69

References .. 70

Appendix A1 .. 75

Setupactivity and Related Class Diagrams ... 75

Appendix A2 .. 76

ListModuleFragmentActivity and Related Class Diagrams ... 76

Appendix A3 .. 77

TabmoduleFragmentActivity and Related Class Diagrams ... 77

Appendix A4 .. 78

TabFileFragmentActivity and Related Class Diagrams ... 78

Appendix A5 .. 79

Evaluation Activities and Related Class Diagrams.. 79

Appendix A6 .. 80

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page xi

Search Activities And Related Class Diagrams .. 80

Appendix A7 .. 81

File Handler Activities and Related Class Diagrams ... 81

Appendix A8 .. 82

Utility Activities and Related Class Diagrams ... 82

Appendix A9 .. 83

Appcontroller and Version Class Diagrams ... 83

Appendix B .. 84

Content Provider Project Android Manifest .. 84

Appendix C .. 90

Content Provider Project Setupactivity .. 90

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page xii

List of Figures

Figure 1.1 Cognitive Theory of Multimedia Learning ... 5
Figure 1.2 Instantiating the Framework to Realize a Native Mobile Application 10
Figure 1.3 Types of Content Supported by the NMMLA Framework ... 10
Figure 1.4 NMMLA Framework Use Case Diagram from Component Standpoint 12
Figure 1.5 Framework Navigation Hierarchy ... 13
Figure 1.6 Framework Data Model Class Diagrams .. 15
Figure 1.7 Framework Content Flow Algorithm Tree .. 16
Figure 2.1 Android Platform Architecture .. 26
Figure 2.2 Schematic for Creating PhoneGap Mobile App .. 28
Figure 3.1 Abstraction of Key Underlying Ideas behind Spiral Model .. 35
Figure 3.2 Model View Controller Architecture ... 38
Figure 3.3 Data Flow from SQLite DB and Asset Folder to View .. 40
Figure 3.4 Loading and Population of View Mechanism by Controller 40
Figure 3.5 Implementation of MVC in NMMLA Framework ... 41
Figure 4.1 Implementation of the Content Flow Algorithm Tree in Android 47
Figure 4.2 Swim-Lane Activity Diagram for Content Flow Algorithm Tree 48
Figure 5.1 Organization of HTML and Image files in Asset Folder .. 56
Figure 5.2a Homepage User Interface on Phone (NL=0) ... 58
Figure 5.2b Homepage User Interface on Tablet (NL=0) .. 58
Figure 5.3a Introduction of Learn-Doc Component on Phone (NL=1, NL=1) 59
Figure 5.3b Introduction of Learn-Doc Component on Tablet (NL=1).. 59
Figure 5.4a Learn-Doc Modules and Module 1’s Tabview on Phone (NL=1, NL=1) 60
Figure 5.4b Learn-Doc List of Module 1’s Items and HTML Modules on Tablet (NL=1) 60
Figure 5.5a Learn-Video: List/Detail View of Video Items on Phone (NL=2, NL=3) 61
Figure 5.5b Learn-Video: Detail View of Video Item on Tablet (NL=3) 61
Figure 5.6a Learn-Slide: Listview and Detail View of Item(s) on Phone (NL=2, NL=3) 62
Figure 5.6b Learn-Slide: Detail View of an Image Item on Tablet (NL=3) 62
Figure 5.7a Simulate: Listview of Modules/Detail View of Item on Phone (NL=1, NL=3)...…..63
Figure 5.7b Simulate: Detail View of Simulation Item on Tablet (NL=3) 63
Figure 5.8a Evaluate: LMFA/QuestionActivity/ScoreActivity on Phone (NL=1, NL=2, NL=3) 64
Figure 5.8b Evaluate: AnswersActivity on Tablet (NL=4) .. 64
Figure 5.9a Resources: Detail View of Component on Phone (NL=1, NL=1) 65
Figure 5.9b Resources: Detail View of Component on Tablet (NL=1) .. 65
Figure 5.10a Listview of Help Items and Detail View of Item on Phone (NL=1, NL=2) 66
Figure 5.10b Help: Detail View of Help Item on Android Tablet (NL=2 66

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page xiii

List of Tables

Table 1.1 ADL Classifications of Mobile Devices ... 5
Table 1.2 Cognitive Principles of Mobile Learning ... 7
Table 1.3 File Formats Supported by Framework .. 11
Table 1.4 Framework Component Grid .. 13
Table 1.5 Gartner’s 2012 4Q Report on Global Smartphone Sales by Operating System……… 20
Table 2.1 Android Native C/C++ Libraries .. 27
Table 2.2 Features of Multimedia and Associated Design Principles .. 31
Table 3.1a Module Table Fields and Data Types ... 39
Table 3.1b Quiz Table Fields and Data Types .. 39
Table 3.2 Native Application Files and Storage Folders .. 39
Table 4.1. Framework Packages and Composition ... 43
Table 4.2 Framework APIs ... 52
Table 4.3 SetupActivity’s Data Models and Constructors .. 53
Table 5.1 Framework Key Features .. 55

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page xiv

Acronyms

AB – Actionbar
AD – Activity Diagram
ADT – Android Development Tool
API – Application Programming Interface
CP – Content Provider
DV – Detail View
DPI – Density-Independent Pixel Per Inch
FDM – Framework Data Model
GNU – GNU Not Unix
GPL – General Public License
GV – Gridview
HP – Homepage
HPFA – HomePageFragmentActivity
HTML – Hypertext Markup Language
HUI – Homepage User Interface
HEI – Higher Education Institution
IDE – Integrated Development Environment
JDK – Java Development Kit
JRE – Java Runtime Environment
LM – Listview Mode
LMFA – ListModuleFragmentActivity
LV – Listview
MLS – Mobile Learning System
NL – Navigation Level
NMMLA – Native Mobile Multimedia Learning Application
TV – Tabview
TCD – Technical Class Diagram
TFFA – TabFileFragmentActivity
TM – Tabview Mode
TMFA – TabModuleFragmentActivity
UCD – Use Case Diagram
UI – User Interface
UX – User Experience
XML–Extended Markup Language

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 1

Chapter 1
Introduction

The advent of Personal Digital Assistants (PDAs) and much later smartphones brought about a
paradigm shift in the way, how, when and where we learn—from e-learning to m-learning [1],
which fosters a much more personalized and self-directed learning. Upside Learning [2], while
referring to mobile technology “as any device that is designed to provide access to information
in any location, or while on the move,” defines mobile learning as “the acquisition or
modification of any knowledge or skill through the use of mobile technology, anywhere,
anytime, resulting in the modification of behaviour.”

Mobile learning has made great inroads worldwide into our way of life and every facet of our
humanity, be it personal or professional, in a way some few years ago no one expected or ever
imagined. For example, on the educational and organisational fronts, it has made such impact
that you would hardly find a Higher Education Institution (HEI) teacher or student, a corporate
employer or employee, both in developed and developing countries, without a smartphone—be
it in the sitting room, bedroom, office, classroom, on the road, in the air or at sea. According to
Heiphetz [3], it has impacted our lives to such a great extent that some of us are unable to
leverage all of its benefits, which include but not limited to the following:

1. Makes content universally accessible anytime, anywhere
2. Adapts to student and employee needs (personalization)
3. Enables reflection
4. Is continuous, ongoing and flexible
5. Enables formal and informal learning
6. Increases knowledge retention and saves time
7. Encourages knowledge sharing and gathering
8. Readily available
9. Adapts to the needs of the organisation (academia and business)
10. Creates best practices

M-learning is made possible by mobile devices, mobile technology, mobile platforms and
mobile applications, which come basically in three different forms: 1) a dedicated standalone
application that can run on individual mobile devices; 2) a client-server model with the client
application running on mobile device and a server application on remote server; and 3) a mobile
web browser that requires back-end application-server connection in the course of sending
requests from the mobile device [4, 5].

The introduction of the open-source Android platform [6] in 2007 by the Open Handset Alliance
(OHA) pushed the frontiers of mobile learning further, owing to its openness, flexibility, and
relatively low cost of developing and owning its applications, as opposed to the iOS, Windows

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 2

Phone 7 and other mobile development platforms [7]. Similarly, according to [8], “Android
applications have none of the costly and time-intensive testing and certification programs
required by other platforms such as BREW and Symbian.” As a result, a large number of
learning content developers and providers (e.g. Moodle, Blackboard etc) started taking
advantage of it as a medium for delivering rich, interactive multimedia content to a wide range
of learners with different learning preferences across different geographical locations and time
zones. Consequently, mobile multimedia learning applications (native and web-based) abound in
the marketplace today, as evident in Google Play. However, while there is a substantial body of
knowledge on the design and implementation of mobile multimedia learning application
frameworks for web-based applications, there is little or none on native applications, which can
take advantage of the mobile device’s underlying hardware resources and rich user interfaces in
delivering rich multimedia learning user experience (UX) [9]. This research sets out to bridge
this gap by providing a conceptual design of a NMMLA framework and implementing it as a
library on the Android platform using an Object-Oriented Programming (OOP), Universal
Modelling Language (UML) and Model View Controller (MVC) approach, Java programming
language and the Eclipse Integrated Development Environment (IDE) with Android
Development Tool (ADT) and other required development tools plugged in. The framework will
help guide the process of mobile multimedia learning application development and facilitate
future development on the Android platform.

The framework is made up of a number of components. A component, within the context of the
framework, is represented by an icon (with certain functionality) on the Android device’s screen.
It is either hosted in the main body, called gridview (GV) or at the top of the screen, called
actionbar (AB). Thus, the framework has two types of components, namely, gridview and
actionbar. The former are the main components, while the latter are the support components.

The main (GV) components are grouped into five (5) major abstracted categories, which include
AtomicItem, TabFile, ListItem, TabModule and ListModule, which content
developers and providers can leverage in delivering a complete functional NMMLA, which
include components such as Introduction, Learn, Simulate, Evaluate, Resources and Help in line
with industry guidelines such as the Advanced Distributed Learning M-learning Guide [10].

The support (AB) components are further grouped into two: menu and action. The action
components include About, Search and Help. They derive from the main components, with
the last two offering utility services across an instance application. About is a HTML file which
holds information about the instance application, which utilizes the framework. Search
enables the learner to look up words in the dictionary included in the application. Help offers a
list of HTML files, which provide information on the usage of various components of the
application. Search and Help (represented by an icon and text) are pinned to the actionbar
throughout the application UIs. On the other hand, the menu components include Course,
Theme and Render Mode menus, which are pinned to the actionbar as well. They enable the
framework to support multiple courses, themes and render modes respectively. Theme is

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 3

customizable by the content provider (CP) if he chooses not to use the default provided by the
framework. For small–sized screen, the actionbar components may overflow to the menu at the
bottom of the screen, while for large screens they may be rendered as a list of submenus at the
right-hand corner of the actionbar. And for much larger screens, such as tablets, all the menu
items may be rendered across the actionbar.

The NMMLA framework was designed by adopting an Object-oriented Programming (OOP)
approach and the Universal Modelling Language (UML). For the modelling, Use Case Diagram
(UCD), Activity Diagram (AD) and Technical Class Diagrams (TCDs) were used, while for the
implementation, Java programming language, Eclipse IDE with plugged-in ADT and other
required development and desktop/online asset-generating tools, were used. Moreover, the
framework is backward compatible. By virtue of Android’s FragmentActivity class [6]
and the Actionbar Sherlock Library [11], the framework is capable of supporting both phones
and tablets alike, ranging from API 8 (Android 2.2) to API 17 (Android 4.2) platforms.

This academic work will benefit stakeholders in the mobile learning field, be it in education,
government or organization, in four major ways. First, it will help content providers on the
Android platform in these sectors with little or no application development know-how to
concentrate on the development of quality multimedia on any subject or course for learners,
while relying on it as a reliable medium to deploy their content, thus reducing time to market.
Second, it will provide NMMLA developers on any platform, especially computer scientists and
aspiring techno-entrepreneurs, with the fundamental knowledge, skills, systematic design
techniques and programming approaches needed for successful software application
development. Third, in the context of forward engineering, the UML diagrams, provided by this
thesis, offer a veritable design base, required for the successful development of future native
multimedia learning applications. Fourth, it will help students (especially those living far away
from the classroom), workers and individuals with different learning preferences have access to
rich multimedia content of their choice and learn on the go without internet access being a
barrier, especially on the African continent where poor or lack of internet connectivity and
limited bandwidth continue to militate against the full adoption of e-learning and m-learning.

The rest of this chapter presents the background to this thesis as well as the aims and objectives.
It goes further to state the research question(s), which this thesis aims to answer. Finally, it
explains the thesis structure and organization by providing an insight into what the next chapters
cover. However, before proceeding further, it may be useful to state some of the text-formatting
styles adopted and assumptions made throughout this work. Standard programming constructs
such as Java class and object names; framework class and object names; Android widget names
and related keywords such as “Activity”, “Search”, “listview” etc are written in Courier New
font. This is done so as to facilitate easy reading and understanding of the concepts presented in
this material. Also, the CP in the middle of the m-learning value chain, for the most part, is
referred to as “user”, while the consumer at the tail end of the chain is referred to as “learner”.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 4

1.1 Background
Mobile learning, being an offshoot of mobile technology and the internet revolution, is one of
the greatest wonders that have happened to humanity since the industrial revolution in the early
19th century [7]. It offers a veritable tool in man’s endless quest for knowledge to provide
answers to many of the yet unanswered philosophical and metaphysical questions, and find
scientific solutions to the plurality of its problems, which range from social to medical and from
physical to economic, just to mention a few. Similarly, today, like never before, the media for
the acquisition of the required knowledge and skills to solve these problems have increased
phenomenally and become raceless, spaceless and timeless. As a result, anyone, anywhere,
anytime, any age (AAAA), can learn through whichever means and media he prefers, and come
up with lasting solutions to any of the world’s problems, as the world has become flat, and keeps
flattening each day, due to the power of Information and Communications Technology [12],
multimedia, and lately mobile technology and devices. According to [13], “mobile phones are
misnamed.” Rather, “they should be called ‘gateways to all human knowledge’.” Similarly,
mobile technology was described by [2] as the most popular and widespread technology on the
planet, which has become the most rapidly adopted technology in history, with the global
mobile industry expected to grow to $1.9 trillion by 2015 from the current $1.5 trillion level.
Furthermore, the global subscriber base and the number of mobile connections are projected to
grow to 4.6 billion and 9.1 billion respectively by 2015. Finally, according to the multimedia
principle [9], “People learn more deeply from words and pictures than from words alone.”

On the mobile front, Africa is widely acknowledged as the world’s fastest growing mobile
market [14]. According to George Ferreira [15], Africa is the second largest and fastest mobile
phone market in the world after China, with Nigeria, South Africa, Kenya and Ghana taking the
lead in smart phone sales, adding that mobile device penetration grew from a base of 90 million
in 2005 to a current estimate of 450 million handsets in 2012. In a survey carried out by a global
market research firm, TNS, it was found that 25% of Nigeria’s over 105 million mobile
telephone subscribers use smartphones. Similarly, Tony Liangwei [16], projected 30 million
smartphones were expected to be sold in Nigeria between now and 2015.

The statistics in the foregoing hold a huge potential for the African continent and Nigeria in
particular on the mobile learning front: more and more people will eventually own a smartphone
in the next few years to come, which will not only be used for basic communication or just-in-
time learning but can support rich multimedia learning content as well. This behooves the
African research community to leverage this great opportunity for the educational development
of its citizenry as developed countries have done over the years [7].

1.1.1 Contextualized M-Learning
While internet access and high-speed connectivity can be taken for granted elsewhere in the
world, here in Africa and Nigeria in particular, these twin necessities of an information age are
still luxuries and continue to pose a great challenge for learners and teachers on the continent
and in the country [7]. In cases and places where they are available, the cost of access or

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 5

download is still on the high side to the extent that most students and teachers cannot afford it
[17]. Thus, as espoused by [17, 18, 19], there is need for the adoption and development of a
contextualized learning framework or model that takes the infrastructural and technological
limitations of these environments into consideration. Consequently, they called on learning
content developers and providers on the continent and in the country respectively to endeavour
to develop contextualized e-learning models and systems, which support and facilitate teaching
and learning in these environments. This is necessary, more especially when, as [17] noted, full
internet connectivity, in places where there is, is not uniform across all locations, and most
distance learners neither attend residential sessions nor have the opportunity to have
synchronous assistance in hard-to-understand portions of study modules because they are not
living close to their teachers or classmates.

1.1.2 Mobile Devices and Application Development
A mobile device basically is a portable device that can be carried from place to place and used in
enhancing day-to-day living such as communication, searching for information on the Internet,
job opportunities, and above all, teaching and learning. According to [10], a mobile device is
any device that:

1. Turns on instantly (don’t require boot-up)
2. Is carried in a pocket or purse most all the time and are gaining ubiquity
3. Has sufficient power to last one day
4. Has input and output capabilities and a processor

It added that mobile devices are more than just a phone, as they come in different categories and
sizes. Establishing that basic mobile phones are not suitable for m-learning, it identified and
classified those that offer huge potential for m-learning in a logical way as shown in Table 1.1.

Table .1. ADL Classifications of Mobile Devices
S/N Mobile Device Capabilities
1. Smartphones System-On-Chip (SoC), full browser / HTML5 support, Wi-Fi, 3G/4G,

music player, GPS, video-capable, Bluetooth, touch support, camera,
accelerometer, 3D video acceleration, etc.

2. Tablets Same core features as smartphones, but larger screen sizes (e.g., 5', 7',
9') and optional keyboard, and no true phone.

3. Non-phone
Devices

Wi-Fi support, browser, other features, etc. iPod, PDAs, handheld game
consoles, wearable devices, or portable media players.

1.1.2.1 Mobile Development Concerns
Usually, when developing for mobile devices, more issues than for desktops need to be
addressed by the developer, as the mobile device has a lot of limitations compared to the desktop
environment. According to [10], these limitations include battery life, connectivity, cost, data
charges, device ownership, screen size, security and technology. Other concerns which need to
be addressed as well by the developer include network, carrier, device and platform.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 6

1.1.2.2 Screen Sizes, Resolutions and Densities
Unlike desktops and laptops, mobile devices have some restrictions such as limited battery life,
small screen size and resolution. Besides, they come in different display sizes, densities and
resolutions as evident in Android phones and tablets. Generally, Android devices come in four
different display screen sizes, which include small, normal, large and xlarge. Consequently, the
programmer must be prepared to tackle these issues if he wants his application to support (run
seamlessly in) a wide range of mobile devices with different sizes and resolutions. Resolution is
the number of physical pixels contained in a screen. However, it is more preferable for
developers to work with screen density, which is the quantity of pixels within a physical area of
screen, referred to as dpi (dot per inch). But then, during the definition of layouts and layout of
widgets on the UI, a density-independent metric known as density-independent pixel (dp), which
is a virtual pixel unit, is required. This metric allows layout dimensions or positions of widgets
on the screen to be expressed in a density-independent way. As a standard, one (1) dp is
equivalent to one (1) physical pixel on a 160 dpi screen, which is the baseline density assumed
by the system for a medium density screen [20, 21]. Generally, Android devices come in four
basic different screen densities—low density-independent pixel per inch (ldpi), simply referred
to as low; medium density-independent pixel per inch (mdpi), simply referred to as medium;
high density-independent pixel per inch (hdpi), simply referred to as high; extra high density-
independent pixel per inch (xdpi), simply referred to as extra high.

1.1.3 Theory of Multimedia Learning
According to Mayer [9, 22], one of the fundamental hypotheses underlying research on
multimedia learning is that multimedia instructional materials that are designed taking into
consideration how the human mind works are more likely to result in meaningful learning than
those that are not. He summarizes it in the multimedia principle: “People learn more deeply from
words and pictures than from words alone.” His cognitive theory of multimedia learning
(CTML) is based on three cognitive science principles of learning, which include the following:

1. The human information processing system includes dual channels for visual/pictorial and
auditory/verbal processing (i.e., dual-channels assumption); and

2. Each channel has limited capacity for processing (i.e., limited capacity assumption) and
3. Active learning entails carrying out a coordinated set of cognitive processes during

learning (i.e., active processing assumption).

He advocates that multimedia instructional materials should be designed to meet the specific
five cognitive processes in multimedia learning, which are depicted in Fig. 1.1 and as follows:

1. Selecting relevant words from the presented text or narration,
2. Selecting relevant image from the presented illustrations,
3. Organizing the selected words into a coherent verbal representation,
4. Organizing selected images into a coherent pictorial representation and
5. Integrating the pictorial and verbal representations and prior knowledge.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 7

Figure .1. Cognitive Theory of Multimedia Learning

According to Pocatilu & Pocovnicu [23], an entertaining multimedia content has the potential of
“transforming young students’ learning from something that they need to do into something that
they like to do.” They gave a typical example as entertaining multimedia content which
combines gaming and learning. See Table 1.2 for the other cognitive principles of mobile
learning [24]. For the most part, the one in the bottom row builds on the other in the top row.

Table 1.2. Cognitive Principles of Mobile Learning

S/N Cognitive Principle Statement
1. Modality Principle People learn, retain, and transfer information better when the

instructional environment involves auditory narration and
animation, rather than on-screen text and animation.

2 Redundancy Principle People learn, retain, and transfer information better when the
instructional environment involves narration and animation,
rather than on-screen text, narration and animation.

3. Coherence Principle People learn, retain, and transfer information better when the
instructional environment is free of extraneous words, pictures
or sounds.

4. Signalling Principle People learn and transfer information better when the
instructional environment involves cues that guide an
individual's attention and processing during a multimedia
presentation.

5. Contiguity Principle People learn, retain, and transfer information better in an
instructional environment where words or narration and pictures
or animation are presented simultaneously in time and space.

6. Segmentation
Principle

People learn and transfer information better in an instructional
environment where they experience concurrent narration and
animation in short, user-controlled segments, rather than as a
longer continuous presentation.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 8

1.1.4 Learning Style Models
Just like humans are different, so are their learning styles and preferences. In this section, we
will briefly look at two (2) of the most common learning style models: Neil Fleming's
VAK/VARK Model and David Kolb's Learning Styles Model. This is necessary so as to put the
objectives, which this thesis seeks to realize, into proper context.

1.1.4.1 Neil Fleming's VAK/VARK Model
The Neil Fleming's VAK/VARK model is used by learners to identify their preferred learning
style in order to maximize their educational experience by focusing on what benefits them the
most. It is one of the most common and widely-used categorizations of the various types of
learning styles [25, 26, 27] based on neuro-linguistic programming (VARK) models. According
to the model, as cited in [28], learners can be categorized into three (3) major groups: visual
learners, auditory learners and kinesthetic learners or tactile learners.

1.1.4.1.1 Visual Learners: Visual learners, according to Fleming’s model, have preference for
seeing and visualizing what they learn. He noted that they think in pictures and prefer visual aids
such as overhead slides, diagrams, flipcharts, handouts, videos, etc. This group of learners
prefers sitting in front in the classroom so no one obstructs their view of the teacher and
blackboard. For this group of learners, video, slides and HTML files, replete with diagrams and
images, which the NMMLA framework supports, will be useful and beneficial [27].

1.1.4.1.2 Auditory Learners: This set of learners, according to Fleming, best learns through
listening to audio content such as lectures, discussions, tapes, etc. The accommodation of audio
content in the framework is targeted at meeting the need of this set of learners [27].

1.1.4.1.3 Tactile/Kinesthetic Learners: This group of learners prefers to learn by experience,
i.e. through a hands-on approach, e.g. feeling, touching, moving and doing things. They prefer
being actively involved in exploring the world around them and engaging in scientific
experiments [27]. The NMMLA framework attempts to accommodate this group of learners by
supporting swiping and sequencing through content and the delivery of interactive content such
as simulations, which learners can interact with very closely so as to realise a heightened UX.

1.1.4.2 David Kolb's Learning Styles Model
David Kolb's [29] learning styles model gave rise to the Learning Style Inventory (LSI): an
assessment method used to determine an individual's learning style. Based on the Experiential
Learning Theory (ELT), it is one of the most widely accepted models with substantial empirical
support. According to this model, which identified two pairs of related approaches towards
grasping and transforming experience, namely, Concrete Experience/Abstract Conceptualization
and Reflective Observation/Active Experimentation respectively, the ideal learning process
engages all four of these modes in response to situational demands [28]. Thus, in order for
learning to be effective, all four of these approaches must be actively involved and integrated.
However, as individuals attempt to use all four approaches, the model postulated, they tend to

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 9

develop strengths in one experience-grasping approach and one experience-transforming
approach. Consequently, the resulting learning styles are combinations of the individual’s
preferred approaches. These learning styles include converger, diverger, assimilator and
accommodator [30].

1.1.4.2.1 Convergers: Convergers are characterized by abstract conceptualization and active
experimentation. They are good at making practical applications of ideas and using deductive
reasoning to solve problems. The support of a simulation component in the NMMLA framework
will help this group of learners to actively engage in simulation activities on a mobile phone
prior to having the opportunity for live experiments.

1.1.4.2.2 Divergers: Divergers tend towards concrete experience and reflective observation.
They are imaginative and are good at coming up with ideas and seeing things from different
perspectives. The NMMLA framework provides for this group of learners likewise by allowing
them to interact with the multimedia learning application on the Android device through
clicking, swiping, zooming and sequencing through their learning content, which includes
HTML files, images, audio, video, simulations and quizzes.

1.1.4.2.3 Assimilators:	 Assimilators are characterized by abstract conceptualization and
reflective observation. They are capable of creating theoretical models by means of inductive
reasoning. Textual learning content, delivered in HTML format, supported by the framework,
will be suitable for this group of learners.

1.1.4.2.4 Accommodators:	Accommodators prefer to have concrete experience and engage in
active experimentation. They are good at actively engaging with the world around them and
actually doing things instead of merely reading about and studying them. The simulation
component accommodated by the framework will be beneficial to this group of active learners.

1.1.5 Framework Overview
A review of existing literature revealed that not much research has been done on the process of
developing a NMMLA framework on the mobile platform. As such, as earlier stated, this thesis
attempts to come up with a conceptual design and implement it as a library on the Android
platform. The framework leverages the underlying hardware resources, such as audio and video
players, accelerometers etc, in delivering interactive multimedia-rich content for various
educational and training courses. Fig. 1.2 shows a schematic of how the framework can be
instantiated to realize a functional application. The CP loads the content from the IDE filesystem
into the framework, compiles it into a “.apk” format and pushes it to the Android device.

1.1.5.1 Multimedia Support
Due to the different learning preferences and styles of learners, the framework is designed to
support various types of interactive multimedia learning content including quizzes, which enable
learners to evaluate themselves upon finishing taking a modular content. Fig. 1.3, from content
standpoint, portrays the types of multimedia, which are supported by the NMMLA framework.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 10

Figure 1.2. Instantiating the Framework to Realize a Native Mobile Application

They include text, HTML, images, audio, video and simulations (graphics and animations).
These contents, for the most part, except for audio which plays on the background, are
embedded or rendered in a view widget on the screen, e.g., webview, imageview,
videoview etc. Table 1.3 depicts the various types of audio, video and image multimedia
formats supported by the framework and the Android platform [6]. Consequently, the framework
can be said to support the needs of verbal, visual and tactile learners, which can be regarded as
the major kinds of learners as outlined by Fleming model. HTML, video and simulation are
targeted at meeting the needs of verbal, visual and tactile learners respectively. In general,
learners can interact with the content they are studying/learning by clicking, swiping, paging etc.

 (Pre-defined System)

Image

Quiz

View View

 Native Multimedia Learning Application Framework

Image

Figure 1.3. Types of Content Supported by the NMMLA Framework

HTML

Text

Audio

Video

Simulation

View

Output Input

Native Application

Content

FRAMEWORK

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 11

They can also carry their multimedia content anywhere they go. This is a fundamental deviation
from the traditional learning model, instructor-led training, where the learner was passive,
confined in space and time, or in situations whereby he is able to carry his content (reading
materials and textbooks) wherever he goes, weight and non-portability pose a great challenge.

Table 1.3. File Formats Supported by Framework
Types Audio Video Image
Supported
File Type/
Container
Formats

3GPP (.3gp)
MPEG-4 (.mp4, .m4a)
ADTS raw AAC (.aac, decode in
Android 3.1+, encode in Android
4.0+, ADIF not supported)
MPEG-TS (.ts, not seekable,
Android 3.0+)

3GPP (.3gp)
MPEG-4 (.mp4)
MPEG-TS (.ts, AAC audio
only, not seekable, Android
3.0+)

JPEG (.jpg)
GIF (.gif)
PNG (.png)
WebP
(.webp)

1.1.5.2 Framework Use Case Diagram
Fig. 1.4 shows the UCD for the NMMLA framework. It captures the main actors (content
provider on the right and learner on the left) and the overall components in the framework,
which are abstracted. The abstract nomenclature is indicative of their render modes (RMs),
which include listview mode (LM) and tabview mode (TM) for modular components, and detail
view (DV) for atomic components. These components, represented by intuitive icons, are laid
out either in the homepage (HP) gridview (GV) and at the top of the screen (actionbar) in an
instance application. For small–sized screens, the actionbar components may overflow to the
menu at the bottom of the screen, while for large-sized screens they may be rendered as a menu
at the right-hand corner of the actionbar. Better still, for larger screens like tablets, the
components are spread out along the actionbar. Table 1.4 shows the Framework Component
Grid (FCG). It outlines the features of the various components supported by the framework,
including their navigation levels (NLs). The dark orange color shows that the modular
component can render in TM when clicked. The same explanation holds for the modular
component with mid-orange color. The light orange color shows that the modular component is
composed of items in a list. Similarly, the blue color indicates that a file is an atomic item (either
in the HP GV or on the AB) or a tabbed detail view or an item in a list. The same applies to the
light blue color for sim (simulation). NL indicates the number of clicks (see Fig. 1.5 [6])
required to get to the detail view of each item contained in an atomic or modular component [7].

The CP loads the framework with the required content from the right, while the learner
consumes it from the left. As shown, the entry names for all items of content are stored in a
database, such as SQLite database, while their corresponding files (image, HTML, video etc) are
stored in the CP’s project filesystem in the IDE [7].

Now, let us take an example of how the learner can interact with the framework components,
and how this interaction can be mapped to the component grid in Table 1.4.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 12

 Fig. 1.4. NMMLA Framework Use Case Diagram from Component Standpoint

To illustrate this, let us say, as an example, he wants to study a module in Course 2. As a result,
he selects Course 2 from the Course drop-down menu. Course 1 (default) pops off and Course 2
comes up on the screen, displaying its components in the HP GV and on the AB. The learner
prefers to study a textual module, contained in a Learn component comprising a number of
modules of HTML items (just like the chapters of a book having different topics) [7].

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 13

Table 1.4. Framework Component Grid
Component Features Other

Name Tab List Item File Sim NL

AtomicItem 1

TabFile 1

ListItem 2

TabModule 2

ListModule 3

However, he does not prefer the default render mode (LM) preset by the CP. As a result, he
proceeds to select his choice (TM) from the RM options menu. And then, he goes on to click
Learn. At this, a navigational tabview (dark orange in the FCG) opens, displaying the items of
the first module in the component in a listview (mid-orange in the FCG). From this list, he can
select an item (light orange in the FCG), which opens up the detail view of the corresponding
file (dark blue in the FCG). All of these took only just two clicks or NLs (mid-purple in the
FCG) to arrive at the detail view, as against three if he were in LM. Basically, the RM allows
the learner to decide whether to swipe or click through his content, e.g. HTML files [7].

\\ Figure 1.5. Framework Navigation Hierarchy

Examples of top
level views an app
can support

Category views which
allow user to drill
deeper into an app

Detail/Edit view
where user view or
create data

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 14

Moreover, the Course menu can also be used by content providers to organize courses according
to levels of difficulty such as “Basic,” “Intermediate,” and “Advance [7].”

1.1.5.3 Framework Model View Controller
The Model View Controller (MVC) is a programming paradigm or practice leveraged by
programmers to organize projects (especially large projects) in a standard way. Fortunately, in
Android programming, a large part of it is already implemented by the Framework [31, 32]. We
will briefly present the MVC, starting with the model (see Fig. 1.6), which our framework
utilizes in realizing a complete functional NMMLA. Moreover, while discussing the controller,
we present our Content Flow Algorithm Tree, which provides a visual flow of content through
the framework and between the framework controllers in an instance application [7].

1.1.5.3.1 Model: Model is the domain-specific representation of the data (content) on which the
application operates. In our framework, a model is a data structure that is used to retrieve data
from a database or other data sources such as the Android project filesystem in an IDE. Fig. 1.6
shows the UML TCD for the design and composition of the data models (atomic and modular)
which the framework supports. It depicts the static relationships (mainly inheritance and
aggregation) between the various data models, such as Course, Component, Module, Item,
File, Simulation etc, which make up a NMMLA. Examples of File objects include
images, HTML, audio and video, which are specified by the “fileEntryType” attribute in the
File class. Similarly, examples of Simulation include dynamic classes, which are
characterized by graphics and animations. Also depicted in the TCD is the Homepage class,
implemented as HomePageFragmentActivity (HPFA). This class inherits from the
Android’s FragmentActivity class and implements the interface
onGridItemSelectedListener. The implementation of this interface defines what
happens when a component in the HP GV is clicked. Moreover, the inclusion of the HP class
alongside the data models helps in portraying how the HP of the NMMLA relates with other
components, such as CourseBundle, ThemeBundle, Help, Search etc. It also portrays
how HP relates with intent-receiving classes such as ListModuleFragmentActivity
(LMFA), HtmlHandlerActivity (HHA) etc. These classes, referenced by a diamond-ended
arrow, come up on screen when invoked, i.e. sent an intent by HPFA.

Another very useful piece of information captured in the diagram is how the Module class
relates with Quiz class. We see in the diagram that for every module composed of items there
can be one or no corresponding quiz as desired by the CP. Finally, we see that a module can
have a render mode, LM or TM, which determines how its composed items will be rendered on
the screen. This allows the learner to have and make choices according to his learning style and
preferences. Similarly, a modular component can have a render mode, LM or TM, which
determines how its modules will be rendered on the screen. Finally, the HP class also has a
render mode static attribute, which determines in the overall how the modular components laid
out on the HP screen will be rendered when selected (clicked) by the learner [7].

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 15

 Figure. 1.6. Framework Data Model Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 16

1.1.5.3.2 Controller: In MVC pattern, the controller which, in most implementations, sits
between the model and the view, defines the behavior of the application, maps user actions to
model update, and responds to user gestures such as click, swipe etc [30, 31]. Basically, the
framework comprises eleven (11) controllers, excluding simulation classes (shown in a broken-
line box), which are simply RLOs, within the context of this framework, to be provided by the
CP. The controllers are categorized according to functions as follows:

1. Course Loader (Root)
2. Component Router (Trunk)
3. Module/Item Dispatchers (Branch)
4. AtomicFile Handlers (Leaves)

This hierarchy clearly realizes our conceptual Content Flow Algorithm Tree (see Fig. 1.7), a
communication network, which originates from the CP’s application setup controller class
(root), where content is uploaded using the APIs provided by the Homepage controller, and
culminates in the framework’s detail-view handlers (leaves), where the RLOs are rendered for
the learner to study and interact with. The controllers were implemented in Android using both
regular activity and a special activity called FragmentActivity, which by virtue of
the usage of the Actionbar Sherlock Library have the word “Sherlock” pre-appended to them.

 Figure 1.7. Framework Content Flow Algorithm Tree

Component
Router HomePage

API

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 17

1.1.5.3.2.1 Course Loader: This is where the instance application content is fed into the
framework. It is the root of the CFAT, responsible for fetching learning content (RLOs) from the
application’s databases and filesystem (like nutrients from the roots of a tree), which are finally
rendered as detail views (at the leaves) after traversing the component router (trunk) and
module/item dispatchers (branches). This was implemented in Android as a user-named (setup)
activity, which also presents a splash screen before opening the HP.

1.1.5.3.2.2 Component Router: It is the main UI which offers APIs to receive the application
content (mainly a course and a theme bundle). On receipt of the course bundle, it unbundles it
and renders the components of the first course on the screen as icons in a GV/AB. Then, it routes
their flow across the framework (to Tier-2 or directly to Tier-3 controllers) upon learner’s events
and depending on the component’s RM. We implemented this controller as
HomePageFragmentActivity (HPFA) by extending Android’s FragmentActivity class.

1.1.5.3.2.3 Module/Item Dispatchers: They are so-called because they do module or item, or
both, dispatching. They include ListModule, TabModule and TabFile controllers. Generally,
they are Tier-2 controllers, which receive a component with one or more modules and dispatch
the composed items to atomic file handlers, except for TabFile, which is also a file handler (i.e.
Tier-3) by virtue of receiving a one-module component from both component router and
ListModule dispatcher and rendering the composed files in tabbed DVs. Specifically,
ListModule performs both roles: dispatches modules (to self) and items to atomic file handlers.
We used FragmentActivity in Android to implement them.

1. TabFileFragmentActivity (TFFA): It can be referred to as a self-contained dispatcher as it
both receives a component and renders files in DV (reason being Tier2/3). It operates on a
single-module TM component comprising a list of files, sent from the router (trunk) or
ListModule dispatcher (branch) via an intent [6] and renders the files in navigational
tabbed detail views (leaves). It also responds to and handles learner’s gestures, e.g.
swiping. The broken lines indicate navigating from AB item, e.g. quiz, to a detail view.

2. TabModuleFragmentActivity (TMFA): It operates on a component, comprising modules,
with TM, sent from the router or trunk, and renders their composed items in navigational
tabs of listviews. It is an item dispatcher. It does this by responding to and handling
learner’s gestures, e.g. sending a file item in any of its tabs of listviews to an atomic file
handler to render it in DV when the learner clicks on it.

3. ListModuleFragmentActivity (LMFA): It is both module and item dispatchers. It operates
on a component, which is composed of modules or a single module composed of items,
with LM, sent from the component router or self respectively, and renders the modules or
items in a listview. It also responds to learner’s gestures, e.g. a click on a module or an
item in a cell, by sending the clicked module to self or item to the appropriate atomic file
handler at the leaves.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 18

1.1.5.3.2.4 AtomicFile Handlers:	They handle atomic files, such as HTML, image (or slide),
audio and video, received from the dispatchers and render them on the screen as DV at the
leaves. We used regular activities in Android to implement them.	

1. HtmlHandlerActivity (HHA): It treats and renders HTML files in webviews. It also

handles sequencing back and forth through the files belonging together in a module.
2. ImageHandlerActivity (IHA): It treats and renders images in imageviews and handles

sequencing through them.
3. AudioHandlerActivity (AHA): It renders and plays audio files of different formats

supported by Android in media player in the background, and handles sequencing
through the files belonging together in a module.

4. VideoHandlerActivity (VHA): It plays video files of different formats supported by
Android using a media controller. It renders them in a videoview, and handles
sequencing through the files belonging together in a module.

1.1.5.3.2.5 Quiz Handlers: They were implemented in Android as three regular activities. They
handle and render questions, score and answers respectively during quiz sessions.

a) QuestionActivity (QA): It is responsible for rendering questions and options on the
screen. It also handles sequencing through questions back and forth during a quiz.

b) ScoreActivity (SA): It renders the learner’s quiz’s score on the screen, after which the
learner can proceed to AnswersActivity to check answers to the attempted questions.

c) AnswersActivity (AA): It renders quiz’s answers on the screen after the learner has
finished taking a quiz. It also provides him with the option to retake another quiz or
return to the activity where he left off, examples of which are those displaying a list of
quizzes (or modules) and item’s detail view during pre-and-post evaluation respectively.

1.1.5.3.3 View: The view is what the learner sees. It is responsible for rendering the model on
the screen in a visual form known as widgets suitable to interact with. In a native Android
application, the view includes listview, imageview, textview, buttons etc. Usually,
the activity holds these views, which are laid out in and loaded from an Extended Markup
Language (XML) file stored in the layout folder. These views can be populated with content
pulled from within the code, IDE project’s filesystem (such as res folder) and SQLite database
(using data models) [6, 7, 31, 32].

1.2 Aims and Objectives
This thesis aims to design and implement a NMMLA on the Android platform that will facilitate
the development and deployment of multimedia learning content, reduce time to market, and
help students and workers learn on the go without the lack or cost of internet connectivity and
limited bandwidth being a setback. As a result, this thesis sets out to achieve the following:

1. Propose and design a mobile multimedia learning application framework that supports
listviews, tabviews, HTML, images, audio, video, simulations, multiple themes, and the

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 19

delivery of multiple as well as a wide range of educational courses in different fields of
knowledge using a systematic approach that can guide the process of mobile multimedia
learning application development in the future.

2. Implement the framework on the Android platform using an Object Oriented
Programming (OOP) and Model View Controller (MVC) approach, Java programming
language and ADT plugged into Eclipse IDE.

3. Realise a complete working Native Mobile Multimedia Learning Application (NMMLA)
that can support both Android phones and tablets.

1.3 Motivation for Choosing Native Application and Android Platform
The review of existing literature on mobile learning reveals that a greater part focuses on web-
based multimedia learning applications, frameworks and environments, paying little attention to
their native counterparts and the role they play in mobile learning, especially, given the fact that
not all students or employees or individuals—for example, on a continent like Africa where
most people still live below the poverty line—having being able to procure a smartphone, say
for example, a Samsung Galaxy Gio S5660, which on the average goes for nothing less than
$130 [33], could afford internet connectivity in order to leverage the benefits of mobile learning
in their academic pursuit, personal or professional life. Similarly, for those who are able to
afford connectivity, speed and bandwidth become an issue. Many factors have been identified as
responsible for the slow growth of broadband internet services in Africa. According to Dowuona
[34], the 2012 West and Central AfricaCom Conference in Dakar, Senegal, “attributed the
sluggish growth of broadband Internet in Africa to high cost of bandwidth and unfriendly
regulatory environment.” Thus, in an environment like Africa, there is need to encourage the
development of native multimedia learning applications and frameworks that facilitate the
development and delivery of rich, interactive and highly engaging multimedia learning
applications, as such applications require one-off download or installation from a local
repository or marketplace such as Google Play, thereby reducing or removing the need for
continuous internet connectivity, which, for the most, is unaffordable. This will allow a large
number of learners without internet access or continuous internet access to take advantage of
mobile learning and the benefits it brings in the development of the human mind, without
connectivity or bandwidth posing a challenge. In this light, the mobile phones, equipped with the
right amount of storage and multimedia capabilities, can be said to truly replace the traditional
textbooks and study materials. However, we encourage the inclusion of internet resources (e.g.
through hyperlinks) NMMLAs as well. This will allow for a more frequently updatable content
and enable learners with internet connectivity to access these resources anywhere and anytime.

On the other hand, Android was chosen as the platform of choice for the implementation of the
framework because of its openness, flexibility and the ubiquity of its mobile devices (phones
and tablets alike) around the world. According to Hanafi and Samsudin [35], mobile applications
developed on the Android platform are more efficient and effective compared to other platforms
such as Windows, Symbian etc. They argued that such applications produce faster, more user

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 20

friendly and appealing applications. Moreover, Android is becoming more and more ubiquitous
and patronized than any other mobile operating system (OS) or platform in the world. According
to Gartner [36], in its quarterly report on the global smartphone sales based on OS for the last
quarter of 2012 (see Table 1.5), Android increased its market share in the same period from
51.3% to a commanding 69.7%.

Table 1.5 Gartner’s 2012 4Q Report on Global Smartphone Sales by Operating System

1.4 Research Questions
The main thrust of this thesis is to address the fundamental research question posed as follows:

 “How can African students with different learning preferences learn anywhere

 and anytime without the cost or lack of internet connectivity being a barrier?”

By extension or elaboration, the following research questions readily derive from the above:

1. How can teachers in HEIs and training organizations deliver their teaching and training
materials to those students far away from the classroom and studying workers who are
always on the move without cost or lack of internet connectivity and limited bandwidth
being a barrier?

2. How can learning content providers deliver rich and interactive multimedia learning
content on a ubiquitous mobile platform with little or no technical know-how of the
required Software Development Kits (SDKs), programming knowledge or skills?

3. What are the steps, procedures, tools and software development methodology and
techniques required for the successful design and implementation of a native mobile
multimedia learning application framework, from which applications can be instantiated
in order to reduce development time and time to market?

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 21

1.5 Thesis Structure
The rest of this thesis is organized into five (5) chapters: Chapter 2 to Chapter 6. Chapter 2
focuses on software frameworks and reviews of a number of them as well as existing mobile
learning frameworks and environments. Chapter 3 zeroes in on the methodology. It discusses the
framework requirements, design and implementation approaches used. Chapter 4 dwells on the
implementation of the framework by focusing on the tools used as well as the framework
packages and their constituent classes. It goes further to explain how the framework functions,
focusing on the data and control flow and how content is rendered in different views. Chapter 5
presents the outcomes (results) from the design and implementation of the framework. It
portrays how the framework can be instantiated and leveraged in realizing mobile multimedia
learning applications. Chapter 6 focuses on the conclusion, contributions and challenges
encountered in the course of realizing the framework. In concluding, it wraps up by giving a
perspective on possible future research.

1.6 Expected Contributions
The NMMLA Framework makes a significant contribution to the field of m-learning, especially
within the African context where internet connectivity and bandwidth continue to pose a great
challenge. As a growing field, proponent and scholars such as Traxler [1], Kurubacak [37], Pettit
and Kukulska-Hulme [38], Motiwalla [39], Sharples et al. [40], Keegan [41] and others, as cited
by Muyinda et al. [17], have called for the development of theories, models, frameworks and
tools that can advance the m-learning field. Thus, this research attempts to respond and act in
line to this clarion call by making the following contributions:

1. Providing a framework for the design and development of native mobile multimedia
learning applications, which support the delivery of rich interactive and modular
multimedia learning content such as texts, images, audio, video and animations as well as
multiple and customizable courses and themes.

2. Showing how to design and implement a framework as a library on Android platform
using software engineering development techniques, Eclipse IDE and relevant tools.

3. Providing a broader understanding of the area of multimedia learning application
development (mobile and desktop alike) and a basis for future improved frameworks and
systems that integrate native and web-based technologies and platforms.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 22

Chapter 2
Literature Review

Computing power and network bandwidth have increased dramatically over the past decade.
However, the design and implementation of complex software remains expensive and error-
prone. Much of the cost and effort stems from the continuous re-discovery and re-invention of
core concepts and components across the software industry. In particular, the growing
heterogeneity of hardware architectures and diversity of operating system and communication
platforms makes it hard to build correct, portable, efficient, and inexpensive applications from
scratch.
 – Fayad & Schmidt (1997)

2.1 Overview of Software Framework
In this chapter, we present the review of existing relevant literature, which we carried out in
order to know what has been done before on the subject matter of this thesis, what standards and
guidelines that are already existing, which we could leverage in the design of our proposed
framework. We started by defining and establishing what a framework is, especially in the field
of software engineering. We also looked at their advantages and disadvantages. We then
proceeded to review a cross-section of open-source and commercial mobile frameworks,
multimedia learning frameworks and learning management systems (LMSs) in general.

Framework means different things in different fields. However, generally, it is provided as a
guide for project implementers or system developers to follow in order to avoid duplication of
efforts or reinvention of the wheel, which Fayad and Schmidt [42] rightly pointed out above as
being one of the major costs in software development. Generally, a framework can be defined as
a blueprint—a guideline or set of steps—that guides the execution of a project, carrying out of a
process or the realization of a system. However, in computer programming, a framework,
technically known as software framework, is an abstraction in which software providing generic
functionality can be selectively altered or manipulated by additional user written code, resulting
in the realization of application-specific software [28]. According to [43], a software framework
is a set of source codes or libraries which provide functionality common to a whole class of
applications. In other words, a software framework can defined as a set of cooperating and
customizable classes, which offers a reusable design for a specific class of software [44].

Furthermore, it can be established from the foregoing that a software framework is a universal,
reusable software platform used to develop or instantiate software applications, products and
services in a given domain. It is leveraged by programmers to facilitate software development by
creating application-specific subclasses of the framework’s abstract classes. For the most part,
the framework dictates the application architecture (overall structure, partitioning into classes
and objects, how the classes and objects collaborate etc) and the overall application's flow of

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 23

execution. These design parameters are predefined so that the application designer can
concentrate on the specifics of the application, as the design decisions that are common to its
application domain are already taken care of by the framework. For this reason, frameworks
more often than not emphasize design reuse over code reuse. However, in some cases,
frameworks include concrete subclasses, which developer can put to work immediately. (This is
where the NMMLA framework fits in.)

Examples of frameworks include support programs, compilers, code libraries, application
programming interfaces (APIs) and tool sets (toolkits) that integrate all the different components
to enable development of a project or solution [28]. Specific examples include web application
framework which provides user session management, data storage, and a templating system;
desktop application framework which provides user interface functionality and widgets, which
are commonly used GUI elements [43]; and the Android Framework utilized in developing the
NMMLA framework.

2.1.1 Features of a Framework
There are some key characteristics which differentiate a framework from normal libraries. They
are discussed in the following section [28].

1. Inversion of Control: In a framework, unlike in libraries or normal user applications, the
overall program's flow of control is not dictated by the caller, but by the framework. The
“inversion of control” in the run-time architecture of a framework is often referred to as
The Hollywood Principle, i.e., “Don't call us, we'll call you.” This is characteristic, for
example, of the Android application framework which is built extensively around
callbacks.

2. Default Behavior: A framework has a default behavior. This default behavior must
actually be some useful behavior and not a series of no-ops.

3. Extensibility: A framework can be extended by the user usually by selective overriding
or specialized by user code to provide specific functionality. A good example is the t

4. Non-modifiable framework Code: The framework code, in general, is not allowed to be
modified. However, users can extend the framework, but not modify its code.

5. Multi-functional: A framework offers a broader range of functionalities, which are all
often used by one type of application while a library usually provide one specific piece
of functionality.

2.1.2 Purpose for a Framework
Generally, the purpose of software frameworks is to facilitate software development by allowing
designers and developers to concentrate on meeting software requirements rather than dealing
with the more standard low-level details of providing a working system, thereby reducing the
possibility of introducing new bugs and the overall development and deployment time.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 24

2.1.2.1 Advantages of Using a Framework
Leveraging frameworks in the development of applications offer a number of advantages. The
advantages include the following [43]:

1. Reliability and Cost-Effectiveness: Using code built and tested by other programmers
increases software reliability, and saves time and money.

2. Specialization: It allows for specialization in collaborative projects, which are made of
framework and application developers. This separation of tasks, which uses divide-and-
conquer mechanism, allows each team to focus on more specific goals and leverage their
individual strengths. For example, the programmers who are experts at user interface
design might work on the client application while the security experts test and strengthen
the framework upon which the application is built.

3. Security: Frameworks can offer security features which are often required for a common
class of applications. This provides every application written with the framework to
benefit from the added security without the extra time and cost of developing it.
Examples include secure session management and escaping database input.

4. Modularity: By handling “lower level” tasks, frameworks can assist with code
modularity. Business logic, for example, can remain in the application while the
mundane tasks of database connectivity and handling user logins can be handled
separately in the framework.

5. Best Practices: Frameworks often help enforce platform-specific best practices and rules.
A desktop GUI framework, for example, may automatically build toolbars and buttons
common to the local operating system. A web application framework may assist with
encrypting user passwords or payment processing.

6. Design Patterns Support: Frameworks can assist in programming to design patterns and
general best practices. For example, many frameworks are built according to the Model-
View-Controller (MVC) design pattern [45].

7. Upgrade Benefits: Upgrades to a framework can enhance application functionality
without extra programming by the final application developer. If, for example, an e-
commerce framework offers a new payment method, that option can automatically
become available to the end user with no extra programming by the application
developer.

2.1.2.2 Disadvantages of Using a Framework
There are disadvantages as well in using a framework. They include but not limited to the
following [43]:

1. Degraded Performance: Performance can sometimes degrade when common code or
classes are used. This sometimes occurs when a framework must check for the various
scenarios in which it is used to determine a path of action. It can also occur with
generalized code that is not optimized for a specific situation. Performance degradation,

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 25

though, is often offset by the enhanced speed of development and quality of the final
application.

2. Steep Learning Curve: Frameworks often require a high and very often steep learning
curve so as to use them efficiently and correctly. Usually, specific frameworks become
more valuable to individual programmers as they use them repeatedly. As developers
continuously use the same framework for each new project, the learning curve flattens
and productivity increases.

3. Inflexibility: Functionality which needs to circumvent or work around deficiencies in a
framework can cause more programming issues than developing the full functionality in
the first place. Good frameworks provide utility and structure while still leaving enough
flexibility to not get in the way of the programmer. Some frameworks are so rigid and
highly structured that choosing them for an inappropriate project can be disastrous. This
is not the fault of the framework, but some are more generally suited and flexible than
others. This must be carefully considered by those choosing a framework.

4. Bugs and Insecurity: Bugs and security issues in a framework can affect every
application, which utilizes or instantiates that framework. For this reason, a framework
must be tested, proven and patched separately or in addition to the final software product.

2.2 Mobile Application Frameworks
A cross-section of existing mobile application frameworks will be reviewed in the following
subsections. We will focus on the major and most popular existing learning environments, which
we could find. In addition, we will endeavour to highlight their strengths and application areas.
Finally, we will look at the reason why and situations where the NMMLA framework will be of
greater benefit to content developers.

2.2.1 Android Application Framework
Android is a framework developed and promoted by a consortium of hardware and software
companies, ranging from device and chip manufactures to telecommunication and software
providers. It was initiated by Google in 2007 under the umbrella of OHA. Its ultimate goal was
to promote ubiquity and open source development. The Android framework basically is a
collection of APIs that allow developers to quickly and easily build Android applications for
phones and tablets alike. The framework, as shown in the Android platform architecture in Fig.
2.1, sits between the system/developers’ applications and the Android Runtime which include
the Core Libraries and the Dalvik Virtual Machine (VM). The Core Libraries exposes most of
the functionalities in the Java programming language. The Dalvik VM is written in such a way
that Android devices are able to run multiple VMs efficiently. It executes files in the Dalvik
Executable (.dex) format which is optimized for minimal memory footprint. Also, it relies on the
Linux kernel for underlying functionality such as threading and low-level memory management.
Every application runs in its own process, with its own instance of the VM. This prevents each
running application from interfering with others. Underlying the Android Runtime are the native
libraries (C/C++) which are sitting directly on the Linux OS (a light-weight and secure kernel).

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 26

Figure 2.1. Android Platform Architecture

These libraries make it possible for native and third-party applications to communicate with the
underlying OS. The set of native C/C++ libraries (see Table 2.1), included in the Native
Development Kit (NDK), is utilized by various components of the Android system. Through the
Android Framework, these capabilities are made accessible to application developers [6].

 Activity Manager

Surface
Manager

Content Providers Window Manager

Developers

Applications

System Applications

Home Contacts Browser Phone

APPLICATIONS

Media
Framework

Location
Manager

Resource
Manager

Telephone
Manager

Package
Manager

View Systems

APPLICATION FRAMEWORK

SQLite

Display Driver

Notification
Manager

LIBRARIES

FreeType WebKit OpenGL |
ES

SSL SGL libc

Camera Driver

Dalvik Virtual
Machine

Core
Libraries

 ANDROID RUNTIME

Keypad Driver Wi-Fi Driver

Flash Memory Driver Binder (IPC) Driver

Power Management Audio Driver

 LINUX KERNEL

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 27

Table 2.1. Android Native C/C++ Libraries
S/N Library Function
1. System C

Library
This a BSD-derived implementation of the standard C system library
(libc), tuned for embedded Linux-based devices.

2. Media
Libraries

It is based on PacketVideo's OpenCORE; the libraries support playback
and recording of many popular audio and video formats, as well as static
image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and
PNG.

3. Surface
Manager

It manages access to the display subsystem and seamlessly composites
2D and 3D graphic layers from multiple applications

4. LibWebCore

It is a modern web browser engine which powers both the Android
browser and an embeddable web view.

5. SGL The SGL is the underlying 2D graphics engine.
6. 3D Libraries This is an implementation based on OpenGL ES 1.0 APIs; the libraries

use either hardware 3D acceleration (where available) or the included,
highly optimized 3D software rasterizer.

7. FreeType FreeType is used to render text images (of vector and bitmap font
formats) on to the screen.

8. SQLite It is a lightweight relational database engine, leveraged by Android
applications.

9. Linux Kernel The Linux kernel acts as an abstraction layer between the hardware and
the rest of the software stack. Android leverages Linux version 2.6 for
core system services such as security, memory management, process
management, network stack, and driver model.

Though the Android Framework is open source such that just anyone could develop a native
application in whatever domain, developing a functional application on this platform may
require some amount of time and basic knowledge of software development. For the most part,
the learning curve could be very steep for most developers, especially for beginners or new
comers on the Android platform. One of the ultimate goals of this thesis is to reduce this
challenge in the m-learning domain by providing: 1) a blueprint for application/framework
developers; and 2) a one-page-setup and Do-It-Yourself (DIY) toolkit for content developers,
which will facilitate the building of complete functional native mobile multimedia learning
application on the Android platform.

2.2.2 Rhodes Framework
Rhodes Framework, now called RhoMobile Suite, is an open-source MIT-licensed Ruby-based
platform, which allows developers to quickly write locally executing, device-optimized native
mobile applications. Developed by Motorola, it is the first smartphone framework for mobile
application development. It supports mobile platforms such as Android, iPhone, iPad, RIM
Blackberry, Windows Mobile, Windows Phone 7 and Symbian. It also supports the use of
synchronized data offline. It is based on MVC, with views written in HTML and controllers in
Ruby. It is able to leverage device capabilities such as GPS, PIM contacts and calendar, camera,
native mapping, push, barcode, signature capture, Bluetooth and Near Field Communications

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 28

(NFC). One of its advantages is that it allows for writing codes or interfaces (in HTML) once
and building for the majority of smartphones [46]. However, just like the Android Framework,
the learning curve could be very steep. It is not completely free as the word “open-source”
suggests, as you are required to pay to have access to higher features as an enterprise. Besides, it
is not tailored specifically for multimedia learning application development like the NMMLA
framework.

2.2.3 Open Mobile IS
Open Mobile IS is an open source framework for mobile application development. It is licensed
under GNU LGPL. Its goal is to provide all the necessary tools, APIs and documents that will
ease the development of effective nomad applications. It utilizes the Java framework, which is
divided into components providing all the needed functionalities [47].

2.2.4 PhoneGap
PhoneGap is a free and open-source framework that allows developers to easily create mobile
applications using standardized web APIs for a wide range of platforms which include Android,
Symbian, Blackberry, iPhone, Bada, Windows Phone 7 + 8 and WebOS. The Web technologies
include HTML, CSS, and JavaScript. However, to easily communicate with backend services
written in any other languages, developers can make use of network protocols such as
XmlHTTPRequest, Web Sockets, etc. This capability allows PhoneGap apps to remotely access
existing business processes while the device is connected to the Internet. Also, there are different
numbers of APIs which are available for different platforms. For Android in particular, APIs are
available for File, Media, Storage, Contacts, Camera, Compass, GPS etc. Fig. 2.2 shows the
process of creating a PhoneGap application and deploying it to various mobile platforms.
Developers can build their own apps, called third-party apps, and deploy them to the
marketplace such as App Store and Google Play for end-users to download [48].

 Figure 2.2. Schematic for Creating PhoneGap Mobile App

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 29

2.3 Multimedia Learning Frameworks and Environments
A significant amount of work has been done relating to multimedia learning environments and
frameworks. However, most of them are theoretical, web-based and on multimedia content.
Parsons et al. [49] worked on Design Requirements Framework for Mobile Learning
Environments in which they proposed a conceptual framework for mobile learning applications
that is able to provide systematic support for mobile learning experience design. They combined
a game metaphor and several studies (narratives) of mobile learning environments to realize it.
The m-learning design requirements include Learning Objectives, Learning Experience, m-
Learning Context and Generic Mobile Environments. To test the framework, they took both
reverse and forward engineering approaches. They applied it as “a post-hoc analytical tool to
three successful m-learning systems and as an ad-hoc analysis framework for the requirements
phase of an m-learning project for the purpose of validation.” As a post-hoc analytical tool, they
mapped the characteristics of the systems onto the framework. However, this framework is yet
to be applied within a design and implementation context of a complete m-learning application.

Shanmugapriya and Tamilarasi [4] worked on Android-based learning environment using web
services. In this work, they proposed an m-learning application for ubiquitous learning
environment. They showed a framework where Android phones and tablets are able to access
the web-based m-learning system from the classroom environment using Wi-Fi and outside the
campus using 3G Network, and a laptop or computer from the home environment using wireless
Internet. They also outlined the roles of the various users of the system such as content
developer, application (framework) developer and learner. However, they did not show how
such a mobile application framework can be developed by the framework developer, for
example, how the application data can be modelled.

Mostakhdemin-Hosseini and Tuimala [50] also did some work on a mobile learning framework.
In their work, they gave an overview of the development issues and steps the mobile learning
system developer must consider and follow respectively. Concerning the former, they identified
analysed three factors which include Mobile Usability, Wireless Technology and E-learning
System. Regarding the latter, they captured the steps in a block diagram, which include
Education Components, Device/Network Capabilities, Concept Development and Prototyping.
They went further to show the Prototyping in a Use Case Diagram, where the major
functionalities of the framework were captured. They include Register a Course, Download
Exercises, Listen via Mobile Phone, Access Course Website, Follow Lecture Session, Publish
Task, Provide Feedback, Receive Task Answers and Upload Lecture Session. After the
assessment of the mobile learning systems built based on the framework, they came up with the
following conclusion:

1. Designing m-learning system requires that the implementation platform be carefully
studied.

2. The main challenges in the development of the prototype were network capabilities and
the deficiency of deploying self-developed application on mobile devices.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 30

3. Video streaming plays an important role in a mobile learning system but available
limited bandwidth posed a great challenge for PDAs and mobile devices at the time.
However, 3G network has the potential of offering real time, streaming access to video
archives.

4. Students and staff are willing to embrace m-learning system in their education process.

From the foregoing, we find that the mobile learning framework presented by Mostakhdemin-
Hosseini and Tuimala [50] is web-based and highly abstracted, while the NMMLA framework
which we are proposing in this thesis is native and goes down to show, for example, how the
modular contents are designed and organized, and how simulations can be integrated into the
mobile learning environment, as portrayed in the application data model class diagram.

Muyinda et al. [17] carried out research on how pedagogical models of reusable learning objects
(RLOs) could be designed and developed for mobile learning in different contexts, especially in
developing countries. They used a “Design Research approach to develop a UML-based model
for instantiating applications for deploying and utilizing learning objects on multi-generation
order mobile phones in developing countries of Africa.” They called it M-learning Object
Deployment and Utilization Model (MoLODUM). However, this framework was web-based,
whereas in this thesis we propose a framework for native mobile applications.

Furthermore, Leacock et al. [51] worked on a framework for evaluating the quality of
multimedia learning resources. In the work, they presented the structure and theoretical
foundations of a Learning Object Review Instrument (LORI), which ultimate goal was to
“balance assessment validity with efficiency of the evaluation process”. The instrument enables
learning object users to create reviews based on ratings and comments on nine metrics of
quality: content quality, learning goal alignment, feedback and adaptation, motivation,
presentation design, interaction usability, accessibility, reusability, and standards compliance.
They concluded as follows:

1. With a few minutes of effort, an evaluator can provide a meaningful learning object
review that will be informative on its own and can also be aggregated with the reviews of
others who have evaluated the same object. Therefore, LORI strikes a pragmatic balance
between depth of assessment and time.

2. LORI, as empirically proven by a number of researchers, is useful within the context of
collaborative evaluation and, when used in an educational environment, will go a long
way in helping participants to acquire instructional design and development skills.

3. A heuristic approach, which LORI is based on, is better than the traditional approach
(e.g. pre-publication expert peer review), which is often labor- and time-intensive.

Diezmann et al. [52] presented a theoretical framework for multimedia resources, which was
used to guide the development of a set of multimedia resources in science education. It was
designed to support contemporary approaches to learning and teaching where learners are
viewed as active constructors of knowledge and teachers as facilitators of that learning process

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 31

[53]. They outlined a number of features expected of such multimedia and their associated
design principles (see Table 2.2), which multimedia learning content and framework developers
must take into consideration. They concluded that educational multimedia resources have much
to offer teacher education programs, especially in the light of increasing enrolments, diminishing
budgets and flexible delivery.

Table 2.2. Features of Multimedia and Associated Design Principles
S/N Features Principles
1. Screen Design

• Focus the learner’s attention
• Develop and maintain interest
• Promote processing
• Promote engagement between the learner and lesson content
• Help learners find and organize information
• Facilitate lesson navigation

2. Interaction

• Provide opportunities for interaction
• Chunk the content and build in questions and summaries
• Ask questions but avoid interrupting the instructional flow
• Use rhetorical questions to get students’ to think about content and
 to stimulate curiosity
• Provide for active exploration in the program rather than a linear
 Sequence

3. Feedback

• Keep feedback on the same screen as the response
• Provide feedback immediately following a response
• Provide feedback to verify correctness
• Tailor feedback to the individual
• Provide encouraging feedback
• Allow students’ to print feedback

4. Navigation • Clearly defined procedures for navigation and support
• Consistency in screen structure and location of keys
• Use of familiar icons on control panels
• Progress map or chart to show location within a program
• Help segments with additional information to allow a learner to
 follow interests and construct his or her own learning
 experiences

5. Learner Control • Provide selectable areas for users to access information
• Allow users to access information in a user-determined order
• Provide maps so students can find their locations and allow
 students to jump to locations
• Provide feedback if there are to be time delays on accessing
 information
• Arrange information so users are not overwhelmed by the quantity
 of information
• Provide visual effects and give visual feedback

6. •Use colour sparingly and consistently with a maximum of 3 to 6
 colours per screen
• Use brightest colours for most important information

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 32

• Use neutral colours for backgrounds and dark colours on a light
 background for text
• Avoid combining complementary colours (e.g. red/green)
• Use commonly accepted colours for particular actions (red for stop)
• Avoid hot colours on the screen as they appear to pulsate

7. Graphics • Graphics include photos and scanned pictures
• Icons and photos enhance menu screens
• Information is better understood and retained when supplemented
 with graphics
• Avoid graphics for decoration or for effect
• Use graphics to indicate choices (e.g. left/right arrows)

8. Animation • Can be motivational and attention getting
• Useful for the explanation of dynamic processes
• Subtle benefits by highlighting key information, heightening
 interesting, and facilitating recall

9. Audio elements • Use audio when the message is short and audio rather than text for
 long passages
• Do not let audio compete with text or video presentation
• Provide headphones for in-class use
• Tell students what is relevant and chunk the message with other
 instructional activities

10. Video elements • Use video as an advance organizer or a summation
• Synchronize video with content, and reinforce/ repeat the concepts
 being presented

2.4 Learning Management Systems
In this section, we review two widely used mobile learning environments. They include Moodle
and Blackboard, which are open source and commercial respectively. Both are LMSs, which are
leveraged by HEIs, organizations and individuals to meet their educational and learning needs.

2.4.1 Moodle
Modular Object-Oriented Dynamic Learning Environment (Moodle) is an open-source software
package under GPL for producing Internet-based courses and websites. It is a global
development project designed to support a social constructionist framework of education. It can
be installed and run on any Windows, Mac and Linux OS computer that can run PHP and
support an SQL type database such as MySQL. Basically, a Moodle web-based application
comprises a front page through which users can log in using their browser. Usually, the way
users access a Moodle site varies. Depending on the organization, they might be given logins;
they might be permitted to create accounts themselves, or they might be signed in automatically
from another system. The following outlines the basic features of Moodle [54]:

1. Moodle’s basic structure is organized around courses. These are basically pages or areas
within Moodle where teachers can present their learning resources and activities to
students.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 33

2. Courses can contain content for a year’s studies, a single session or any other variants
depending on the teacher or establishment. They can be used by one teacher or shared by
a group of teachers.

3. How students enroll on courses depends on the establishment; for example they can self-
enroll, be enrolled manually by their teacher or automatically by the admin.

4. Courses are organized into categories according to fields or disciplines. For example,
Physics, Chemistry and Biology courses might come under the Science category.

5. Users log into Moodle without no special privileges—“teacher” or “student” role.
However, according to their needs, individual courses and context, they are assigned
roles by the administrator.

In summary, the major educational features and services offered by Moodle include assignment
submission, discussion forum, files download, grading, instant messages, online calendar, online
news and announcement, online quiz and wiki.

However, the Moodle project has evolved to include Moodle Mobile on different mobile
platforms such as Android, iOS, Blackberry etc. Applications available on Android platform
include UMM, mTouch, Mobile Learning Environment (MLE), mPage, mBook, mBot, Moodle
Joule etc. UMM, for instance, is an unofficial clone of the Moodle Mobile app for iPhone that
works on Android and Blackberry devices. It was built using the high-level cross-platform
JavaScript framework PhoneGap. As a result, it uses web technologies such as HTML5, CSS3
and JavaScript. UMM is intended and has been designed to be easily customizable by HEIs,
organizations, educational website owners etc [55].

2.4.2 Blackboard Mobile Learn
Blackboard Mobile Learn is a commercial web-based mobile learning environment that allows
subscribers to learn anywhere and anytime. It is basically a LMS, which provides teachers and
students, for example, with access to their courses, assignments grades, announcements, online
discussion forums etc through their mobile devices while they are on the move. It also provides
them with the freedom to organize their content the way they choose to on a wide range of
mobile devices which include iOS, webOS, Android and Blackberry [56].

2.5 NMMLA Framework
From the foregoing review, we found out that the majority of existing work on mobile
(multimedia) learning systems and frameworks had been centred round the web [7]. However,
we deviate from this trend to present a NMMLA framework, which supports not just
conventional multimedia learning content such as HTML, images, audio, video but simulation as
well. Content providers with no in-depth programming or application development knowledge
and without bothering about understanding and knowing how to use the Android SDK and
Framework, can leverage our framework with little or no efforts to realize complete functional
NMMLAs on the Android platform.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 34

Chapter 3
Research Methodology

This research adopted two basic approaches in gathering requirements data and arriving at the
final design for the framework. First, as part of a broader collaborative research project
comprising two teams—framework developer and content developers—and given its
responsibility to provide the required framework for instantiating a mobile multimedia learning
application, comprising four (4) computer science courses, namely, Automata, Compiler, Data
Structures and Algorithm, and Information Theory, which were being developed by four other
M.Sc. students at the time, whose task was to develop rich multimedia learning contents,
including simulations and animations, for the framework, which will serve as a pilot test, a series
of interviews, discussions and interactive sessions were conducted with these researchers,
various professors and other fellow researchers as well to capture the key requirements and
specifications for the framework. Second, a survey of existing literature on the subject was
carried out through desktop/internet research in order to put the requirements information
gathered from the interviews and discussions in the right context, refine and reword them before
moving on to design and implementation phases.

3.1 Framework Requirements
Based on the foregoing, the following requirements, subject to extension in the future, were
arrived at (see Use Case Diagram in Chapter 1):

1. The framework should support various types of multimedia such as HTML, images,
audio, video and simulations (graphics and animations).

2. The framework should support a Course menu.
3. The framework should support a Theme menu with default and/or user-defined themes.
4. The framework should support a dual view of modules and items, namely, listview

and tabview, so as to provide the learner with a choice to decide how he wants his
modular components and item-composed modules to be rendered on the screen.

5. The framework should support an About HTML file, which gives a summary of what
an instance application utilizing the framework is all about and does.

6. The framework should support a Help file, which is a modular component composed of
HTML or audio or video files, pinned to the actionbar, and the learner can consult when
he needs usage help on certain components or parts of the application.

7. The framework should support a Search tool to look up words in an instance
application’s dictionary provided by the content provider.

8. The framework should support various types of components, namely, AtomicItem,
TabFile, ListItem, ListModule and TabModule, targeted at delivering
different multimedia contents at different levels in various display modes or views.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 35

9. The framework should support pre-and-post self-evaluation sessions. Thus, it should
support an Evaluation component on the homepage and a quiz action item on the
actionbar when the learner is on a listview of modules/items or on a detail view of a file,
which will enable him to pre- and post-evaluate himself respectively.

10. The framework should support the delivery of the application modules and quizzes from
both SQLite database and the IDE’s filesystem.

11. The framework should provide a significant number of icon sets, scaled for devices with
ldpi, mdpi and xdpi screen densities, which the content provider can leverage as
resources for application components, modules, items, such as About, Help etc.

12. The framework should be able to integrate seamlessly with other user-defined classes,
for example, dynamic classes which deal with simulation.

3.2 Spiral Modelling Approach
The design and implementation of the framework adopted the Boehm Spiral Modelling
Approach [57], with the final functional framework arrived at progressively and incrementally.
Throughout the development, a continuous stream of versions were churned out and made
available to the content developers, supervising professor and fellow researchers and students
for their reviews and inputs. Fig. 3.1 shows an abstracted version of the Spiral Model [58],
which combines the concept of iterative development (prototyping) with the systematic,
controlled aspects of the Waterfall Model [28].

Figure 3.1. Abstraction of Key Underlying Ideas behind Spiral Model

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 36

The model is such that incorporates risk analysis and management all the way, which grows as
the mass of the software development project, cost and thus understanding of the problem grow
with each iteration. Starting at the centre, with the final design, implementation, integration, and
test occurring in the final iteration, each turn around the spiral goes through a series of tasks,
which are outlined as follows:

1. Determine the objectives, alternatives, and constraints on the new iteration.
2. Evaluate alternatives and identify and resolve risk issues.
3. Develop and verify the product for this iteration.
4. Plan the next iteration.

The reason for choosing the Spiral Model over other methods such as Waterfall is that the
software development process can be repeated multiple times for multiple builds [28]. Also,
some level of functionality can be delivered to the customer faster than the Waterfall method
throughout the development cycle. Moreover, the Spiral Method helps in managing risk and
uncertainty by giving room for multiple decision points and explicitly acknowledging that
everything cannot be known before the next activity starts [59].

3.3 UML Diagrams
In designing and implementation the framework, Objected Oriented Programming (OOP) and
Universal Modelling Language (UML) approaches were used. In particular, the following UML
diagrams were leveraged in building the framework:

1. Use Case Diagram (UCD)
2. Technical Class Diagram (TCD)
3. Activity Diagram (AD)

3.3.1 Use Case Diagram
The UCD is a UML diagram which captures the main functionalities and actors together with
their relationships in the instantiation of the framework. The design of the framework started
with a Use Case Diagram (see Fig. 1.4 in Chapter 1) which gives a functional overview of the
framework based on the requirement analysis. It depicts the main and supporting components,
actors, data storage systems and how they interact with one another to provide a complete
functional multimedia learning application.

3.3.2 Technical Class Diagrams
Generally, a Technical Class Diagram (TCD) gives a static overview of all the classes in an
application and how they relate with one another. Fig. 1.6 shows the Framework Data Models
(FDMs) together with the Homepage class. Basically, the TCD depicts the framework
architecture, i.e. its classes and their static relationships such as aggregation, inheritance etc. In
addition, the framework’s TCDs indicate the communication of one class to another by using
references (diamond-ended arrows). Appendix A shows other (detached) class diagrams, which
make up the framework. (See Table 4.3 for most FDM classes and their constructors.)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 37

3.3.3 Activity Diagram
An Activity Diagram is a UML diagram, similar to a flowchart, which captures the business
processes in a system at a high level and the details of complex operations at a low level. As part
of the design and implementation of the framework, an Activity Diagram was drawn to depict
how data (content) and control flow between the major activities when an application is
instantiated from the framework. See Fig. 4.2 and Section 4.4 in Chapter 4 for the Activity
Diagram and detailed explanation respectively.

3.4 Modelling View Controller
The framework also utilized the MVC design pattern in realizing a functional application. The
MVC concept was first defined by the programming language Smalltalk in the 1970’s.
Basically, an application can be thought of as having three main layers as follows:

1. Presentation (user interface)
2. Application logic (business process)
3. Resource management

From the MVC standpoint, the presentation layer is divided into controller and view. The most
important separation is between presentation and application logic. The view/controller split is
less so. MVC is concerned with more of the architecture of an application than is characteristic
of a design pattern. Hence, it is sometimes regarded as an architectural pattern. This architecture,
depicted in Fig. 3.2, is a widely adopted pattern across many languages and implementation
frameworks, especially in web-based applications. Android is an example of a framework,
which implemented MVC. The main purpose of MVC is to achieve code reusability and a clear
separation between its three components, which include the following [45]:

1. Model: business logic and processing
2. View: user interface (UI)
3. Controller: handles navigation and input commands

3.4.1 Model
Model is the domain-specific representation of the data on which the application operates. The
model, sometimes referred to as the domain layer, is another name for the application or
business logic layer, which is responsible for manipulating and adding meaning to raw data. The
application model includes the following:

1. Application state
2. Application rules
3. Persistence data

As shown in Fig. 3.2, the model is responsible for encapsulating the application state and
exposing its functionality. In addition, the model responds to state queries made by the view and
notifies the view of its change in state. However, though Fig. 3.2 shows an interaction between
the model and view, in some implementations, there is none, as the controller sits in-between.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 38

The instances of the application data, defined by the data model, currently in play, and the value
of those instances or objects, represent the application state. The application rules represent the
business logic of the application, for example, “Who does what?” in an admin-user software
system, usually pre-defined by privilege levels by the admin. Persistence refers to long-term
storage of data beyond the scope and time-frame of the user’s session in the application. Though
many applications use a persistent storage mechanism (such as a database) to store data, MVC
does not specifically mention the resource management layer because it is understood to be
underneath or encapsulated by the model. The model also has the ability to read/write from
different or multiple databases [45].

3.4.1.1 Framework Data Model
A model, in our framework, is a program class that is used to retrieve data from a database or
other data sources such as the development environment’s filesystem. Generally, the model has
attributes and methods. The latter are used to alter or manipulate the former (e.g. RM of a
module) by the controller before rendering them in a view. In the NMMLA framework, an
SQLite database and the IDE filesystem are used to store the application’s core data such as
learning modules made up of file items and quizzes made up of questions, options and answers.

 Figure 3.2. Model View Controller Architecture

Method Invocations
Events

User
Gestures

View
Selection

State
Change

State
Query

Change
Notification

Model

-Encapsulates application
 state
-Responds to state queries
-Exposes application
 functionality
-Notifies views of changes

View

-Renders the models
-Requests updates from the
 models
-Sends user gestures to
 controller
-Allows controller to select
 views

Controller

-Defines application
 behaviour
-Maps user action to model
 updates
-Selects views for response,
 one for each functionality

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 39

In the database, these data are basically tables of texts and numbers, which are to be created and
provided by the content developers, while in the filesystem, they are files such as HTML,
images, audio, video, and classes such as simulations. See FDM in Fig. 1.6, which depicts the
framework data models, which include File, Module, Component, Question, Quiz etc.

3.4.1.2 Module and Quiz Data Models
Table 3.1a shows a module’s database table (modelled as Module in the FDM). It outlines the
fields and data types contained in the module table. Similarly, Table 3.1b shows the quiz table
(modelled as Quiz in the FDM) together with the constituent fields and data types.

Table 3.1a. Module Table Fields and Data Types
S/N Field Data Type
1. _id NUMBER
2. fileName TEXT
3. fileEntryName TEXT

Table 3.1b. Quiz Table Fields and Data Types
S/N Field Data Type
1. _id NUMBER
2. Question TEXT
3. correctAnswer TEXT
4. incorrectAnswer1 TEXT
5. incorrectAnswer2 TEXT
6. incorrectAnswer3 TEXT

The physical files are stored in the IDE’s filesystem (see Table 3.2). They include HTML and
image files, which are stored in the asset folder, audio and video files in the raw folder, and
module and quiz database files in the asset folder.

Table 3.2. Native Application Files and Storage Folders
S/N Files Folder
1. HTML Asset
2. Image Asset
3. Audio Raw
4. Video Raw
5. Module database Asset
6. Quiz database Asset

The application databases, which comprise respective module and quiz tables are also stored in
the asset folder of the filesystem as well. In the module table, the “fileEntryName” in the
SQLite database is just a pointer to the files located in the asset folder. So, as shown in Fig.
3.3, while the names of the files are looked up in the database, the actual files are fetched from
the appropriate folders in the IDE. However, as an alternative, the HTML and image files can be
directly read from the filesystem without having to look them up in a database. See Section 5.2.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 40

3.4.2 View
The view is what the learner sees. It is responsible for displaying the model on the screen using
objects called widgets suitable for user interaction. In web applications, the view is the HTML
page and the code which gathers dynamic data for the page, while in a native Android
application, the view includes core data, business logic and navigational widgets (e.g.
listviews, textviews, imageviews, buttons etc); and skin (general look of the
screen). Fig. 3.4 shows the view’s loading and population mechanism by the controller in a
given application. A listview is loaded from an XML file stored in the layout folder into an
activity. It can then be populated with data fetched from either within the application code
or SQLite database or the application project’s filesystem, or any combination.

Fig. 3.4. Loading and Population of View Mechanism by Controller

Loads
layout

XML File
Populates
with texts
and images

Files in
Folders

View (UI) Populates
with texts SQLite

DB

Populates
with texts

Texts in
Code

Render file
in View

Fetch file
from folder

Look up file name
from DB

SQLite
DB

Asset

 View (Screen)

Figure 3.3. Data Flow from SQLite DB and Asset Folder to View

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 41

3.4.3 Controller
The controller maps user requests to model actions, and the response of the Model to appropriate
View. Within the context of our framework, Fig. 3.5 shows the data flow mechanism in an
instance application presenting a list of items in a FragmentActivity (FA). The following
describes the MVC communication as a result of learner’s events:

1. Upon a previous event, the learner is presented with the current UI shown in Fig. 3.5.
2. The learner interacts with the UI in some way, e.g. by clicking an item, say a video item,

in the listview.
3. The controller, in this case a LMFA, receives and responds to the input event from the

learner via a registered handler known as a callback, which associated interface is
implemented by LMFA, and sends an intent to a new controller (this time a regular
activity not shown so as to keep it simple).

4. The new controller (represented by the same controller in the diagram) accesses the
clicked File model, holding the filename from the SQLite database, and uses it to fetch
the actual file from the raw folder into a videoview (not shown) on the screen.

5. The current controller, presenting a new UI (detail view of file), waits for further
learner’s interactions, to begin a new cycle of MVC interaction, depending on the event.

D
a
t
a

M
o
d
e
l

Manipulates
and operates

on data
models

 Figure 3.5. Implementation of MVC in NMMLA Framework

Fetches

Up-
dates

Call
back

Looks up
file name

Retrieves
file

View (UI) Controller

SQLite
DB

Files in
Folders

D
a
t
a

M
o
d
e
l

Loads layout
into View

XML File

Hosts views
and

operates on
data models

Fetch

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 42

Chapter 4
Framework Implementation

After the design of the framework using UML and non-UML-based diagrams as seen in
Chapter1 and Chapter 3, the next task was implementation (coding). This was carried out using
the following Android development tools:

1. Java 1.6 (or higher) [6]
2. Eclipse Integrated Development Environment [61]
3. Android Development Tool (ADT 21.1.0) plugged into the Eclipse IDE [6]
4. Eclipse IDE Android Icon Set Wizard
5. Online Android Asset Studio [62]
6. Online Android Action Bar Style Generator [63]
7. SQLite Database Browser
8. ActionBarSherlock Library [11]
9. Android Phone Emulator (Android 3.2, API 13, QVGA 320X480 mdpi)
10. Android Tablet Emulator (Android 3.2, API 13, WSVGA 1024X600 mdpi)

Java 1.6 is last-but-one-version update to the Java platform from Sun Microsystems Inc, which
comes with the Java Development Kit (JDK) and Java Runtime Environment (JRE) integrated
into the Eclipse IDE, where the framework was developed. Eclipse IDE’s Android Icon Set
Wizard and Android Asset Studio are used to quickly generate and scale icon assets from
existing source images, clipart, or text for different Android devices with different screen
densities such as ldpi, mdpi, hdpi xdpi etc. Examples include actionbar and tab icons for
Android 3.0 and above, tab and menu icons for pre-Android 3.0, launcher icons, notification
icons, generic icons etc. Similarly, the Online Android Action Bar Style Generator allows
developers to easily create a simple, attractive and seamless custom action bar style for Android
applications [63]. Also, it is able to generate all the necessary nine patch assets plus associated
XML drawables and styles which developers can copy directly into their project. For the
framework, it is used to generate customized themes (Theme_Green and Theme_Blue) in
addition to the pre-defined themes (Theme.Sherlock,
Theme_Sherlock_Light_DarkActionBar and Theme.Sherlock.Light), which
any framework activity, extending SherlockActivity must set its theme attribute to,
either in the manifest or code as conditioned by the ActionBarSherlock Library [11]. The CP can
leverage any of these themes provided by the framework without having to worry about creating
another. Alternatively, he can create customised themes using the Online Android Action Bar
Style Generator. Finally, the framework was test-run using real and virtual Android devices of
different APIs, ranging from 8 to 17. However, for the purpose of presentation, we used
emulators (API 13) for phone and tablet, as we will show later.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 43

4.1 Framework Packages
The framework was built as an Android project named NMMLAFramework. It is made up of
nine (9) packages. Table 4.1 shows the names of these packages and their content. The
packages are organized such that most data-model classes are kept in the datamodel package,
while classes that closely interact or cooperate to realize a task are kept together in the same
package. The root package name is com.austuniaizu.koyham.nmmla.framework, to
which each of the names in the package column, except the first row, in Table 4.1 is appended to
form a complete package name.

Table 4.1. Framework Packages and Composition
S/N Package Class Composition
1. [Root Package] AppController, Version
2. Datamodel File, Simulation, Content, Question, Quiz, Item,

Course, CourseBundle, Theme, ThemeBundle, Module,
Component, AtomicComponent, ModularComponent,
SimComponent, EvalComponent, RenderingMode

3. Homepage FilesDBHelper, HomePageGridItemModelAdapter,
HompageGridFragment, HomePageFragmentActivity

4. TabFile TabFileFragmentSPAdapter, TabFileFragment,
TabFileFragmentActivity

5. Listmodule ListModuleFragment, ListItemFragment,
ListModuleFragmentActivity

6. Tabmodule TabModuleFragmentSPAdapter, TabModuleFragment,
TabModuleFragmentActivity

7. Evaluate QuestionsDBHelper, QuestionActivity,
ScoreActivity, AnswersActivity

8. Search DictionaryDatabase, DictionaryProvider,
SearchDictionaryActivty, WordActivity

9. Util FrameworkListFragment, ModuleOptionsMenu,
CommonMenuOptionsItemSelectHelper, Utility,
ModulesViewQuizSimOptionsMenu, DBHelper,
DetailViewQuizOptionsMenu, HtmlHandlerActivity,
ImageHandlerActivity, AudioHandlerActivity,
VideoHandlerActivity

4.1.1 Root Package
The root package is the overall package in which the other packages and special
(Application and Version) classes are contained. The Application class is where we
declared and initialized global variables (resources such as themes, component icons, module
icons, item icons etc) visible across the application (as final and static), while the
Version class contains the version number of the Android application being developed. For
our purpose, the version number of the framework is 1.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 44

4.1.2 DataModel
This package contains the data models or structures in the framework, which are manipulated or
operated on by other controller classes in other packages. See Fig. 1.6 for the Framework Data
Model (FDM).

4.1.3 HomePage
The HomePage package is the entry door into the framework during its instantiation, as it
contains, among other non-activity classes, the Component Router,
HomePageFragmentActivity, which is responsible for receiving content from the Course
Loader, unbundling it and routing the constituent components to the other controllers in the
application. See the Activity Diagram in Fig. 4.2 for the data and control flow.

4.1.4 TabFile
This package is responsible for rendering files in navigational tabs on the screen. It contains the
self-contained module/item dispatcher, TabFileFragmentActivity, which cooperates
with TabFileFragmentSPAdapter and TabFileFragment classes to render HTML
and image files as fragments in respective tabviews (TVs). See Fig. 4.1b in Section 4.4.

4.1.5 ListModule
This package is responsible, through the module/item dispatcher,
ListModuleFragmentActivity, for rendering a list of Module, File, Simulation
and Quiz items in a listview (LV) container hosted by LMFA. ListModuleFragment
and ListItemFragment cooperate with LMFA and are responsible for returning the list of
items via an adapter as a fragment to the listview container.

4.1.6 TabModule
The TabModule package is responsible for handling tabbed modules containing a list of
items. The module/item dispatcher, TabModuleFragmentActivity, renders instances of
TabModuleFragment in a viewpager with the help of an object of
TabModuleFragmentSPAdapter.

4.1.7 Evaluate
The Evaluate package is responsible for handling quiz sessions in an instance application. It
contains QuestionActivity (which renders the quiz’s questions), ScoreActivity
(which renders the learner’s score) and AnswersActivity (which displays all answers to the
questions attempted by learner at the end of a quiz). The Question class contains static
attributes such as databaseName, tableName and numQuestions (see Fig. 4.2), which
must be set before a quiz can be taken, while the Quiz class is used to set the currentQuiz
attribute of QuestionActivity. QuestionsDBHelper, which inherits from DBHelper
in Util package, is used to fetch questions to be answered (the number of which is
determined by numQuestions) from an SQLite database.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 45

4.1.8 Search
The Search package is responsible for accepting search words and displaying search results.
The DictionaryProvider provides access to an application’s dictionary database and
handles all the searches and suggestion queries from a SearchManager class invoked within.
The DictionaryDatabase is responsible for handling the logic to return specific words
from the dictionary, and loads the dictionary table when it needs to be created [6].
SearchDictionaryActivty, being the main activity in the package, is responsible for
displaying search results triggered by the search dialog and handling actions from search
suggestions. Finally, the WordActivity class is responsible for displaying the word
(selected in SearchDictionaryActivty) searched for and its definition (meaning).

4.1.9 Util
This package contains classes, which serves as utilities to other classes in other packages.
Examples include HtmlHandlerActivity, AudioHandlerActivity etc, to which
intents are sent from any of the FAs to display the detail views of files on the screen. Also,
the Util package contains base classes, e.g DBHelper and FrameworkListFragment,
which other classes in other packages inherit from.

4.2 Framework Overview Schematic
Fig. 4.1 shows an overview of the framework when instantiated, from the perspective of content
flow. It is the Android implementation of the Content Flow Algorithm Tree in Fig. 1.7, which
helps in providing a better and clearer understanding of the Activity Diagram in Fig. 4.2. Thus, it
shall be explained alongside Fig. 4.2 in Section 4.4.

4.3 Framework Implementation Activity Diagram
An Activity Diagram (AD) is a UML diagram that shows the business process or complex
operations of a system. For easier understanding of the framework and how the NMMLA
framework works, an AD was drawn to abstract the flow of data (content) and control in an
instance application (see Fig. 4.2). This diagram was drawn using Microsoft Visio.

4.4 NMMLA Framework Implementation Algorithm
The framework comprises four top-level controller activities, which are FAs and outlined
as follows:

1. HomePageFragmentActivity (HPFA)
2. TabFileFragmentActivity (TFFA)
3. TabModuleFragmentActivity (TMFA)
4. ListModuleFragmentActivity (LMFA)

Fig. 4.1 shows the Android implementation of the CFAT. It provides an abstracted view of the
functionality of the framework from activity’s standpoint. The four FAs together with the

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 46

Evaluation Activities (EAs) are correspondingly shown in a swim-lane AD in Fig
4.2. They are responsible for handling and controlling the content flow in an instance
application. The HPFA provides the entry point into the framework from the CP’s
SetupActivity (SUA), where the application content is set up and uploaded from sources
such as SQLite databases, resource and asset folders.

In Fig. 4.1, the boldest arrow (courseBundle) from SUA to HPFA denotes uploading content
into the framework to realize a complete functional NMMLA. Similarly, the bolder arrows
(components) originating from HPFA to the other FAs depict the routing (via an intent) of
different components, which make up a course, to respective dispatchers.

The bold arrows (module) originating from LMFA and terminating in LMFA and TFFA
symbolize sending a module from LMFA to self and TFFA, to render the module’s items
once again as items in a LV or detail-view files in TVs respectively, when the learner selects a
module in a LV. Similarly, the bold arrows originating from LMFA/TMFA/TFFA and
terminating in QuestionActivity in Evaluation Activities denote both sending a
quiz model extracted from a module model (used to preset the static Quiz attribute of
QuestionActivity), and sending an intent to open QuestionActivity for mid- and
post- evaluation. See Lane 4 in Fig. 4.2. (Note: pre-valuation is also possible on the HP, but
then, the sending of an intent to QuestionActivity still has to pass through LMFA, as all
the modular quiz items in the application are deliberately collected by referencing to the
application’s modular component (where each constituent module contains a quiz) using
EvalComponent object) and rendered in a LV in LMFA as the application’s Evaluation
component. This is the reason there are no direct arrows from HPFA to EAs.)

The least bold arrows (file item) originating from FAs and terminating in atomic handler
activities symbolize the sending of a file name, selected by the learner in a LV, to their
respective atomic handler activities for DV rendering after being loaded from the
filesystem. Similarly, the least bold arrow (sim item) from FAs to SIMA symbolizes the
opening of a simulation activity through the sending of an intent to the simulation
activity to bring it up on screen by using its “class” attribute, i.e. its “.class” name. This
occurs when the learner either selects an atomic simulation component in the HP GV or a
simulation item from a LV or AB menu in LMFA/TMFA/TFFA. Note: the broken lines from
TFFA to SIMA show that a simulation activity can only be opened from the AB when the
learner is in TFFA. The same explanation holds for that from TFFA to Html handler
activity.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 47

Application Programming Interface

(a) NMMLS Framework with Composed (Fragment) Activities

QuestionActivity

Evaluation
Activities (EAs)

HomePageFragmentActivity

(HPFA)

Audio
Handler
Activity

TabFile-
FragmentActivity

(TFFA)

TabModule-
FragmentActivity

(TMFA)

ListModule-
FragmentActivity

(LMFA)

Simulation
Activity
(SIMA)

Video
Handler
Activity

Html
Handler
Activity

SetupActivity (SUA)

Image
Handler
Activity

AnswersActivity
ScoreActivity

(b) FragmentActivity Decomposed (c) Evaluate Activities Decomposed

Figure 4.1. Implementation of the Content Flow Algorithm Tree in Android

AnswersActivity (AA)

ScoreActivity (SA)

QuestionActivity (QA)

Fragment

FragmentAdapter

FragmentActivity

App Internal
Data Flow

 Learner Navigation
During Evaluation

AB/Menu
Navigation

File/Sim Item Module Component CourseBundle

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 48

 Figure 4.2. Swim-Lane Activity Diagram for Content Flow Algorithm Tree

Note: All cooperative classes (FA, Adapter & Fragment) are grouped within the FA swim-lane

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 49

Fig. 4.1b shows a mechanism of how a module/item dispatcher, which is a FA, and other
cooperative classes (FragmentAdapter and Fragment, not shown in Fig 4.1a), interact
with one another internally to render data models in a section of the FA’s view. The arrow,
which points from FA to Fragment via FragmentAdapter and back to FA, shows, in a
nutshell, how application content flows between the FA and the Fragment class via an
adapter. Fig. 4.1c, on the hand, portrays a clearer picture of the individual activities, which
make up Evaluation Activities and how the learner can navigate through them during
a quiz session. We will now briefly discuss what goes on in the AD in Fig. 4.2 when an instance
application is created.

4.4.1 HomePageFragmentActivity
From the SetupActivity (see Appendix C), after the application content has been setup
using the relevant File, Sim, Quiz, Item, Module, Component and Course models, with
a number of courses bundled in a courseBundle object, an intent is sent to the HPFA,
in the middle and third lane in Fig. 4.2, to render the first course’s components added to the
bundle as functional icons in the HP GV. For simplicity and clarity, the inner processes that take
place within the application in the course of rendering the components on the HP screen are not
shown. However, Fig. 4.1b simply portrays how data flows internally between a
FragmentActivity and its cooperative classes (FragmentAdapter and Fragment) to
render a fragment in a sub-section of FA in question. Upon the rendering of the components on
the HP, the HPFA takes over control of the application, depending on the learner’s action or
event in terms of the component clicked in the GV or on the AB.

If the learner clicks on an atomic component, for example, with a single simulation activity,
HPFA uses the “.class” name of the activity to send an intent directly to it (the
activity), which then comes up on the screen straightaway. On clicking the Back button, the
learner returns to the HP as depicted in the AD. (Note, for the sake of simplicity and clarity,
once again, the Back button operation is not captured in the Fig. 4.1a. For similar reason (space
in particular), the AtomicFile Handlers and simulation activities shown alone in Fig. 4.1
are shown within the HPFA swim-lane in Fig. 4.2. Similar reason accounts for the AB/menu
item operations such as Search, Theme, About and Help, shown within the HPFA swim-
lane.)

4.4.2 TabFileFragmentActivity
If the user clicks on a single-module component having TM as render mode, HPFA calls TFFA
to set its Component attribute to the clicked component model, and sends an intent to the
TFFA to take over control. TFFA then loads a Viewpager widget defined in the XML layout
into a corresponding viewPager variable declared in the code (and follows the flow
described in Fig. 4.1b to render the file (usually HTML and image) on the screen). TFFA creates
an instance of FragmentStatePageAdapter and uses it to fetch a file fragment into

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 50

XView (e.g. webview or imageview) from an object of TabFileFragment, which is
then rendered on the viewpager on the screen. The learner can then interact with the UI. If he
decides to page or tab through the files, the whole process is repeated to render the new file
fragment in the view (see Fig 4.1b and Fig. 4.2). Otherwise, if he clicks an AB/menu item, the
appropriate activity opens. (Note: the bold lines connote multiple paths are overlapping.
This is deliberately done so as to reduce the number of lines criss-crossing. On getting to its
destination, each line branches off.)

4.4.3 TabModuleFragmentActivity
If the user clicks on a TM component on the HP, HPFA calls TMFA to set its static Component
attribute to the clicked component model, and then sends an intent to TMFA to take over
control. The same process is followed (as explained in the previous subsection about TFFA) to
render a module fragment on the screen, which is a tabbed list of items. However, if the
learner chooses a quiz item on the AB menu, which is part of the TMFA UI, the control is passed
on to EAs to begin a quiz session. This shall be explained in Subsection 4.4.5. Alternatively, if
the learner clicks on an item in the presented list, the detail view of that item comes up on the
screen, as indicated by the bold lines running to the top of HPFA and then branching to the left
underneath the “Menu Item” state symbol.

4.4.4 ListModuleFragmentActivity
If the user clicks on a LM component, HPFA calls LMFA to preset its static Component
attribute to the clicked component model, and sends an intent to LMFA to take over control.
LMFA receives the intent and goes ahead to load a fragment container from the XML layout.
Depending on the type of data model (single- or multiple-module component, or just a module)
sent to it, the LMFA creates a ListFragment object and uses a setter method to set its
Component or Module attribute. The ListFragment object (as carried out within the
respective ListModuleFragment or ListItemFragment class, not shown here) creates
a SimpleAdapter object which gets the data (text and image for each item in the list of
modules or list of items). The adapter puts the data into a listview and returns it as a
fragment to LMFA, which then adds it to its LV container in the current FA’s UI as shown in Fig.
4.1b. The user can then interact with the UI.

If the list rendered on the screen is a list of modules with each module having a LM render
mode, and the learner selects one of the items by clicking, the whole process repeats as shown
by the path running from the decision box in the fifth lane to the “LMFA creates
ListItemFragment object” process within the LMFA lane. Similarly, the one running to TFFA
denotes rendering the items in the module in TM if the clicked module has this as RM.
Finally, the path running to TMFA originates from the fifth lane, which we shall discuss in
Subsection 4.4.5.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 51

However, if the list rendered on the screen is a list of items and the user selects any of it, or he
clicks on an AB/menu item (such as Search, Help, Home etc), the appropriate activity
opens. This is shown by the overlapping path running from the decision box near the bottom of
LMFA in the fourth lane, veering to the left and then top, and finally tearing apart at various
points to open the appropriate activity, which is either a user-defined simulation
activity or HTML/image/audio/video handler activity, or HPFA.

Finally, if the user chooses a quiz option on the menu, control is passed to Evaluation
Activities for the quiz session to begin after QuestionActivity’s static attributes
(databaseName, tableName, numQuestions and returnActivity) relevant to
loading the quiz from the SQLite database and returning to the calling FA respectively must
have been preset using setter methods in the caller FragmentActivity class. However, for
lack of space, this setting of QuestionActivity’s attributes is shown within the
Evaluation Activities lane, as against in the respective caller FA class lane which
actually does this and sends an intent to QuestionActivity to begin the quiz session.

4.4.5 Evaluation Activities
Finally, if the user clicks on a component of type EvalComponent on the HP, as explained in
the foregoing section, HPFA calls LMFA to set its static Component attribute to the clicked
component model, and then sends an intent to LMFA to take over control. LMFA follows
the same path as in Lane 4 to the point where the application’s quiz items are added to the LV
fragment container as cellular pairs of texts and images, which the learner can select from.

When the learner clicks one of the quiz items, the caller FA, in this case LMFA, sets
QuestionActivity’s static attributes (databaseName, tableName, numQuestions
and returnActivity), which are relevant to loading the questions/options from the SQLite
database and returning to the calling FA at the end of the session respectively. The caller FA then
sends an intent to QuestionActivity for the quiz session to begin. This point can also
be reached from the AB menus of TMFA and TFFA as shown in the first and second lanes.

From here, QA loads the XML layout (textview and radiobuttons), which it will use to
render the question and option texts respectively on the screen. Then, if no quiz has been setup
before, QA gets questions (a set of questions) from the SQLite DB and uses it and
numQuestions value as parameters to create a Quiz object, which it assigns to its
currentQuiz attribute. Then QA then populates the views using the currentQuiz data
model, one question and a set of options at a time. Then the user can interact with the rendered
UI by choosing an option and clicking Next to move to the next question. When the learner has
finished taking his quiz, the ScoreActivity renders the scores on the screen, together with a
“Return to Module” and “Check Answers” buttons. On clicking on the latter, the
AnswersActivity renders all the answers (wrong and right) to the attempted questions on
the screen. On the other hand, on clicking on the former, the learner returns to the point of entry

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 52

(either of HPFA, LMFA, TMFA and TFFA) into the quiz session. The latter also provides the
learner with the optional buttons of retaking another quiz or returning to the point of entry or HP
using the Home button icon on the AB.

4.5 Framework APIs
A set of APIs is exposed to the content provider through the HomePageFragmentActivity
(HPFA) to enable him to instantiate the framework. (See Fig. 1.6 for the HPFA class.) The APIs
together with their arguments and return types are presented in Table 4.2. The first in the Table
4.2 is setAppName(…) with a String parameter. It is used to set the name which the CP
wants his NMMLA to bear and thus reflect alongside the application logo on the left hand corner
of the AB. Similarly, setAppPackageName(…) and setAppDatabasePath(…)are
used to convey the CP’s project root package name and database path which are required
internally by the framework to enable it load files such as audio and video, and databases
respectively from the appropriate folder in the filesystem. See the SetupActivity in
Appendix C.

Table 4.2 Framework APIs
S/N HomePageFragmentActivity API Argument Type Return Type
1. setAppName(…) String Void
2. getAppName() - String
3. setAbout(…) About Void
4. getAbout() - AtomicComponent
5. setHelp(…) Help Void
6. getHelp(…) - ModularComponent
7. setSearch(…) - Void
8. getSearch() Search AtomicComponent
9. setAppDatabasePath(…) String Void
10. getAppDatabasePath() - String
11. setAppPackageName(…) String Void
12. getAppPackageName() - String
13. setAppCourseBundle(…) CourseBundle Void
14. getAppCourseBundle() - CourseBundle
15. setAppThemeBundle(…) ThemeBundle Void
13. getAppThemeBundle() - ThemeBundle

4.6 Key SetupActivity’s Data Models and Constructors
Table 4.3 shows the main constructors of key data models used within the SetupActivity
during the instantiation of the framework. The first File has four (4) arguments, the first of
which is the file name, which should display as an item in a listview and on the AB when the
item is selected. The second is the image that should display alongside the item’s text, i.e. file
name. The second Quiz is the data model used in retrieving quizzes from the SQLite database.
The first argument stands for the database name, the second the table name while the third is the
number of questions that should be administered to the learner. This is left at the discretion of

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 53

the content provider. The third Module is used to retrieve a module comprising file items from
a database and/or folder in the filesystem. The first argument “fileName” stands for the name of
the module that should display as an item in a listview activity or on the AB when
selected. The second “isIconType” determines whether the file items in a listview should
display an image along the text or not. The third argument “simulations” stands for the
simulations that are associated or assigned to a module. These simulations are manually added in
the SetupActivity page (see Appendix C). It could be one or more. The fourth argument
“quiz” stands for the quiz assigned to the module in question. The fifth argument
“renderingMode” represents the render mode which the CP prefers the module’s items to render
as, which could either be list or tab. Finally, the last argument “mediaType” determine the type
of media which the composed items are: HTML, image, video or audio? The explanation for the
rest classes follows from the names of the arguments in the constructors.

Table 4.3. SetupActivity’s Data Models and Constructors
S/N Model Constructor Arguments
1. File (String fileName, int image, String

fileEntryName, int fileType)
2. Quiz Quiz(String databaseName, String

tableName, int numQuestions)
3. Module (String name, boolean isIconType,

List<File> files, List<Simulation>
simulations, Quiz quiz, RenderingMode
renderingMode, int mediaType)

4. AtomicComponent (String name, int image, Content content)
5. ModularComponent (String name, int image, List<Module>

modules, RenderingMode renderingMode)
5. SimComponent (String name, int image, ModularComponent

component)
6. EvalComponent
7. FilesDBHelper (Context context, String databaseName,

String tableName, int numItems, String
databasePath)

8. QuestionsDBHelper (Context context, String databaseName,
String tableName, int numQuestions, String
databasePath)

9. Course (String name, List<Object> components)
10. Theme It encompasses all and follows from the order of the

attributes in the Theme class in Fig. 1.6.
11. CourseBundle (String name, int image, List<Course>

courses)
12. ThemeBundle (String name, int image, List<Theme>

themes)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 54

Chapter 5
Presentation and Discussion of Results

In this chapter, we present the result of the implementation of the framework, which is graphical
(user interfaces) by the very nature of this thesis. This outcome is realised by feeding the
framework within the Eclipse IDE with a test input (multimedia learning content), running it on
an Android emulator (phone and tablet) and getting the output, the first of which is the
Homepage User Interface (HUI), which the learner can start interacting with in order to explore
and experience the different functionalities, features, looks and feels, offered by the framework.
First, we present the key features of the instantiated framework application. Second, we present
the outcome (with relevant screenshots) of the instantiation.

5.1 Framework Key Features
The framework has a number of special features which enable it to realize the functional
requirements specified in the UCD. These features provide the learner with a heightened
learning user experience. They are briefly discussed in the following subsections. See Table 5.1
for a summary of these features.

5.1.1 About
This is a HTML file, represented by an icon, pinned to the AB of the HUI. Usually, it provides
information on what the application is about and does.

5.1.2 Course Menu
This is a menu, which representative icon is pinned to the AB (see Fig. 5.1) of the HUI. It
enables the learner to choose from a menu of courses provided by the content developer.

5.1.3 Theme Menu
This is a menu (icon) pinned to the AB of the HUI. It enables the learner to decide the look and
feel of his application by being able to choose any theme of his choice. The theme can be
customized by the content provider by uploading his own set of themes.

5.1.4 Quiz Menu
This is a menu provided in all the FAs’ UI ABs except HPFA. Before selecting a module to
study, apart from the HPFA, the learner can pre-evaluate himself within the application by
choosing from the quiz options offered in the menu. Also, this capability—just one quiz item
represented by an icon or text on the actionbar—is offered in the detail view page of each file
contained in a quiz module.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 55

5.1.5 Sim Menu
The Sim menu just like the Quiz menu is provided in all the FAs’ UI ABs except HPFA. This
enables the learner to select and navigate to a simulation activity when he is studying a module.

5.1.6 Search
The Search tool enables the learner to look up words in the application’s dictionary if provided.
It is pinned to the actionbar of every activity throughout the application.

5.1.7 Help
This is a utility component pinned to the AB of every activity. This enables the learner to
seek help on the usage of any component or part of the application.

5.1.8 Screen Mode
The Screen mode is provided in every activity, except HPFA (see Table 5.1). This enables
the learner to make a choice from the two options provided, namely, full screen and default
screen modes. The former allows the learner to have a full view of the current content on the
screen by hiding the actionbar. The default mode restores the actionbar to the screen.

5.1.8 Render Mode
The Render mode is provided in HPFA and LMFA. This enables the learner to make a choice,
according to his preference, from the two options provided, namely, LM and TM. See Table 5.1
for its location in the application.

5.1.9 Sequencing Capability
The framework provides the learner with the ability to sequence through (back and forth) his
RLOs such as HTML, audio and video files. It also enables him to go back and forth quiz’s
questions during an evaluation session until he has seen his score in the ScoreActivity in
which case he cannot return to a taken quiz except he decides to retake a new one.

Table 5.1 Framework Application Key Features.
Features Content/Items Location
About HTML file HPFA only
Help utility List of HTML files All activities’ ABs
Search utility Text file rendered in a listview All activities’ Abs
Course menu Course 1, Course 2, Course 3 ... HPFA only
Theme menu Black, Blue, Green HPFA only
Quiz menu Quiz 1, Quiz 2, Quiz 3 … All FAs except HPFA
Sim menu Sim 1, Sim 2, Sim 3 … All FAs except HPFA
Screen mode Default and Full Screen Some Activities/FAs
Render mode List and Tab HPFA and LMFA
Sequencing Previous and next File Handler Activities and QA

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 56

5.2 Instantiating the Framework
We shall create an application for three Computer Science courses, namely, Automata, Compiler
and Data Structures. These are some of the important courses in Computer Science, as
understanding them helps students in the area of programming, which is fundamental to
Computer Science. Each of the courses shall contain components such as Introduction, Learn
(Doc, Slides and Video), Simulate, Evaluate, Resources and Help.

To have a complete functional NMMLA, the framework has to be instantiated as shown in Fig.
1.2 in Chapter 1. To realize this, it is added as a library to the content provider’s NMMLA
project in Eclipse IDE and the required classes are imported into the SetupActivity. Then,
content is fed into the framework by setting the appropriate HPFA’s class or static attributes (i.e.
APIs). The setup activity also serves as a splash screen.

The content, which includes HTML/images/quiz, video and simulation classes, are fetched from
the asset, raw and src folders respectively. For the HTML and images (slides), each file is
hierarchically stored in a module folder, contained in their respective folders named with an
“html” and “slide” appendage respectively. For example, as shown in Fig. 5.1, for a Learn-Doc
component, an HTML file could be saved in “module1” folder, and “module1” in
“learn_html_doc” folder, while this folder is in turn saved in the asset folder. The same applies
to the images. Each of the files is read directly into its equivalent File model from the
containing module folder during project setup. (See the SetupActivity in Appendix C.)
However, for the video content (just like audio), the entry name of each video item is looked up
from the SQLite database stored in the asset folder, while the video files are loaded from the
raw folder. Since the raw folder does not allow the organizations of files in hierarchy, the video
files are stored in the same way as in Fig. 5.1, only that in place of the folder names we have
appendages to the filenames. For example, for a file item in “module 1” in Learn-Video
component, the name is written thus “learn_video_module1_filename”. Finally, for the quiz, no
look up is required, the quiz, since it comprises texts, is directly loaded from the SQLite
database file stored in the asset folder. (See the SetupActivity in Appendix C.) For
single file component such as Resources, the HTML file is directly stored in the resource folder
(“resource_html”) hosted in the asset folder.

Figure 5.1. Organization of HTML and Image Files in Asset Folder

filename

module_n

comp_name_filetype

asset

Not Required for an Atomic Component

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 57

5.2.1 Setting up the Application
To set up a mobile application, the content provider has to carry out the following:

1. Set up his Android development environment in the Eclipse or other IDE by installing
the Android SDK and plugging in the necessary development tools such as ADT.

2. Acquire the framework library “NMMLAFramework” and ActionbarSherlock library.
3. Create an Android application project in the IDE.
4. Create an activity named SetupActivity (or any other name) by extending

Android’s activity class or SherlockActivity.
5. Store his multimedia contents into the appropriate folders as follows:

a) HTML/Image files into asset folder
b) Audio and video files into raw folder
c) SQLite (and module) databases into asset folder
d) Application launch icon and customized thematic resources (optional) into the

appropriate drawable subfolders, which is contained in res folder
6. Import the NMMLAFramework and ActionbarSherlock libraries and follow the

SetupActivity example provided in Appendix C.
7. Duplicate the declarations in the NMMLAFramework manifest file in Appendix C by

copying it to your own manifest. This is necessary as explained in Section 6.4.

5.2.2 Running the Application
After running the application on the test emulators (phone and tablet), we will be presented
straightaway with the HUI. Fig. 5.2 shows the resultant application with all the components laid
out in the GV and on the AB. Also shown is the navigation level (NL). The displayed
components—Introduction, Learn (Doc, Slide and Video), Simulate, Evaluate, Resources and
Help—offer a complete functional NMMLA. Introduction introduces each of the components in
the application. The Learn components contain a number of modules, which in turn contain file
items. The various Learn components allow different learners with different learning preferences
to make a choice. Simulate component collects by reference to Learn-Doc (see Fig. 1.6) all the
modular simulation items and presents them as a component on the HP. As such, the learner is
able to have quick access to the application simulations on the HP without having to drill deep
into the application. The same applies to the Evaluate component on the HP, which collects by
reference to Learn-Doc likewise all the quiz items (one per module) and presents them as a list.
This enables the learner to pre-evaluate himself on the HP before going into the application to
study any of the modules in the Learn components. Resources is a HTML file, which presents a
list of hyperlinks to online resources. This enables learners with internet access to get more
information on learnt topics online. Finally, Help provides a list of items, which dwell on the
usage of the application. This is provided in the HP GV for quick access in addition to that on
the AB. Both of them point to the same component (see Appendix C.) The rainbow icon item on
the AB stands for the theme menu, while the rightmost triple-square symbol represents other
menus as shown in Fig. 5.2a.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 58

Figure 5.2a. Homepage User Interface on Phone (NL = 0)

Figure 5.2b. Homepage User Interface on Tablet (NL =0)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 59

5.2.3 Navigating Through the Application
In this section, we present a series of snapshots of the major components in Course 1 as the
learner navigates through or drill deep into the application.

5.2.3.1 Introduction
Fig 5.3 shows the Introduction component. The first snapshot shows it in list mode, with each
item opening up a detail view when clicked, while the second shows it in tab mode with each tab
introducing every other component in the application. Fig. 5.3b is the tablet equivalent.

Figure 5.3a. Introduction of Learn-Doc Component on Phone (NL=1, NL=1)

Figure 5.3b. Introduction of Learn-Doc Component on Tablet (NL=1)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 60

5.2.3.2 Learn – Doc
Fig 5.4a shows a listview of all the HTML modules contained in the Learn-Doc component and
the tabview of Module 1’s HTML files on an Android phone. The learner can select a module in
the left to open a tabview as on the right. Alternatively, the learner can choose the listview of a
module’s items using the Render Mode menu. Fig. 4b, for example, shows the list of items in
Module 1 as well as all the modules of the List-Doc component on a tablet.

Figure 5.4a. Learn-Doc Modules and Module 1’s Tabview on Phone (NL=1, NL=1)

Figure 5.4b. Learn-Doc List of Module 1’s Items and HTML Modules on Tablet (NL=1)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 61

5.2.3.3 Learn –Video
Fig 5.5a shows a listview of the video items in a particular module and a detail view of a clicked
video item on the phone. The star icon on the AB allows the learner to quickly take a quiz, when
done watching a video. Also, Fig. 5.5b shows the equivalent of the second snapshot on a tablet.

Figure 5.5a. Learn-Video: Listview/Detail View of Video Item(s) on Phone (NL=2, NL=3)

Fig. 5.4. Learn Doc: Listview of Video Modules and Items on Tablet

Figure 5.5b. Learn-Video: Detail View of Video Item on Tablet (NL=3)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 62

5.2.3.4 Learn–Slide
Fig 5.6a shows the list of Module 1’s items and a detail view of the fifth item. The latter is an
image item, which portrays the fact that the framework can be used to render presentational
materials such as slides. Fig 5.6b shows the equivalent of the second snapshot on a tablet but
with a different image item. The sequencing arrows in the second and third snapshots can be
used to navigate to the next or previous item in the module in question.

Figure 5.6a. Learn-Slide: List/Detail View of Item(s) on Phone (NL=2, NL=3)

Figure 5.6b. Learn-Slide: Detail View of an Image Item on Tablet (NL=3)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 63

5.2.3.5 Simulate
Fig 5.7a shows the Simulate component when clicked on the HP and a detail view of the first
item contained in the first module (whose items are not shown) on an Android phone. The
learner can interact with the latter, which portrays a Stack data structure, by pushing and
popping the balls, which represent programming variables, into and off the stack respectively.
Fig. 5.7b shows the equivalent of the second snapshot on a tablet.

Figure 5.7a. Simulate: Listview of Modules/Detail View of Item on Phone (NL=1, NL=3)

Figure 5.7b. Simulate: Detail View of Simulation Item on Tablet (NL=3)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 64

5.2.3.6 Evaluate
Fig. 5.8 shows all the activities during a quiz. The first snapshot presents a snapshot of
the Evaluate component when clicked on the HP. The second shows the QuestionActivity
when the learner selects the first item, while the third the ScoreActivity when the learner is
done answering all the questions. The fourth screenshot presents the AnswersActivity on a
tablet. Note the learner can navigate through the questions back and forth as well as return to the
first activity from the third and fourth by using the left button.

Figure 5.8a. Evaluate: LMFA/QuestionActivity/ScoreActivity on Phone (NL=1, NL=2, NL=3)

Figure 5.8b. Evaluate: AnswersActivity on Tablet (NL=4)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 65

5.2.3.7 Resources
Fig. 5.9 shows the detail view of the Resources component when it is clicked on the HP. The
three screenshots, which are HTML files, are the same and show a list of hyperlinks to online
resources. This component allows learners with internet connectivity to access online resources.

Figure 5.9a. Resources: Detail View of Component on Phone (NL=1, NL=1)

Figure 5.9b. Resources: Detail View of Component on Tablet (NL=1)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 66

5.2.3.8 Help
Fig. 10 shows the Help component at different navigation levels. The first snapshot shows a
listview of HTML file items. This opens up when the Help component is clicked on the HP GV
or AB. The second and third snapshots show the detail view of the first item in the Help list on a
phone and tablet respectively.

Figure 5.10a. Help: Listview of Help Items and Detail View of Item on Phone (NL=1, NL=2)

Figure 5.10b. Help: Detail View of Help Item on Tablet (NL=2)

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 67

Chapter 6
Conclusion

6.1 Summary of Framework and Key Features
The Native Mobile Multimedia Learning Application (NMMLA) Framework is a framework
developed to facilitate the development and deployment of native mobile multimedia learning
applications on the Android platform. It was designed using Java, Universal Modelling
Language (UML) and the Eclipse Integrated Development Environment (IDE) with the Android
Development Tool (ADT) and other required development tools plugged in. The framework can
support multimedia learning content such as Hypertext Markup Language (HTML), image,
video, audio and simulation. It provides a number of themes, which include Black, Blue and
Green. It also offers a wide range of well-selected and pre-defined image resources, which are
scaled for different sizes of Android devices with different screen densities such as mdpi, hdpi
and xdpi. This provision was made to enable the content provider to quickly and easily create
intuitive UIs for the learner in order to enhance his user experience (UX). They include thematic
images for components, modules, HTML, image, audio, video, simulation, quiz and sequencing
items. Other provided images and icons include those for Course menu, Theme menu, About,
Help and Search. They are pre-defined in the AppController class as final and static
constants by using intuitive names that suggest what they represent. The content provider can
leverage any of these in defining the look and feel of his entire application. Moreover, by virtue
of Android’s FragmentActivity class and the Actionbar Sherlock Library [20, 21],
leveraged in developing the library, the framework can support both phones and tablets alike,
ranging from API 8 (Android 2.2) to API 17 (Android 4.2) platforms, as evident in the
screenshots in the previous chapter. Table 5.2 shows some of these provisions (features) and
their location within the framework. Finally, the learner can either pre-evaluate himself on the
homepage or post-evaluate himself within the application after finishing taking a module. The
content provider, at the setup of the application, usually determines (presets) the number of
questions to be administered to the learner during each quiz session. These questions are
randomly drawn from an SQLite database stored in the asset folder within the Integrated
Development Environment.

6.2 Summary of Work and Results
With the results (graphical user interfaces and explanations) presented in the preceding chapter,
we can conclude that we have been able to provide a significant answer to the research question
posed in Chapter 1: “How can African students with different learning preferences learn
anywhere and anytime without the cost or lack of internet connectivity being a barrier?” With
our framework, Native Mobile Multimedia Learning Application Framework on Android
Platform, implemented as a library, educators and content providers in HEI’s and
training/learning organizations can now easily and quickly deploy their multimedia learning

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 68

content to the Android mobile platform, which is becoming more and more ubiquitous each day.
This will prevent them from reinventing the wheel and reduce time to market. The benefits of
this research are summarized as follows:

• The proposed systematic Content Flow Algorithm Tree will promote and facilitate the
development and deployment of interactive and multimedia learning content in dual
views (list and tab) on any subject or course of study both on the Android and other
platforms, as it provides a blueprint which developers can leverage.

• The software product of our research and implementation will help students, especially
distance learners with different learning preferences on the African continent, where
internet connectivity and bandwidth still pose a great challenge, to learn outside the
classroom as their courses can now be deployed to their Android devices.

• It will also help employees who work and study at the same time to be able to study their
course work while on the move or at work at their leisure time.

However, educational and training content developers in localized contexts should be prepared
to develop and provide the right multimedia content which will make learning on mobile devices
without internet connectivity a great experience, as the research community comes up with new
and better ways of delivering content to learners.

6.3 Contribution
The contribution made by this thesis can be summarised as follows:

• Provision of a systematic blueprint known as Content Flow Algorithm Tree for the
design and implementation of a native mobile multimedia learning application, which
supports the delivery of rich interactive and modular multimedia learning contents, such
as HTML, images, audio, video and simulations, in dual views (list and tab views), as
well as multiple courses and customizable themes.

• Showing how a framework application can be designed and implemented as a library on
a ubiquitous platform such as Android by using software engineering design principles
and development methodology within an IDE like Eclipse equipped with the relevant
development tools such as ADT.

• Providing more understanding of the area of mobile multimedia learning application
development and a basis for future improved mobile learning frameworks and systems
that integrate native and web-based platforms.

6.4 Challenges
During the development of the framework, many a challenge was faced. However, one stood
out. In the course of test-running the framework, having the content-provider application, hosted
in a different Android project other than the framework (library) project, to see the activity
declarations in the framework’s Android manifest was a great challenge. However, this problem
was worked around by duplicating or porting the activity declarations in the framework’s
manifest to the content-provider project’s Android manifest for the time being. Consequently,
the application started running well (without errors) as expected. But then, we found out

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 69

thereafter in the Android online documentation that this move was actually necessary, as the
repeatedly declared framework’s activities in the content-provider project’s Android
manifest will eventually synchronize with the declared activities in the library’s manifest
as the program runs.

6.5 Future Work
In future work, we intend, first, to improve the rendering of listview items on a tablet as well as
when they are selected. Currently, the list of items and detail view of each item are rendered
separately on different screens. However, we hope to utilize the master/detail format offered by
Android such that the master list of items displays on the left pane while the detail view of each
item on the right of the tablet. Second, as the situation of internet connectivity improves across
the African continent, we hope to integrate and extend our framework to support multimedia
content that can be streamed and downloaded from the Internet and cached locally in the
Android file system. This will enable learners to have internet access to frequently updated
learning content on one hand and local access when there is no internet connectivity. As such,
we will be looking at how our framework can support web-based technologies such as HTML5,
CSS and JavaScript. We also hope to extend our framework to provide much more robust and
collaborative mobile learning environment, where learners can participate as active constructors
of knowledge and teachers as facilitators of the learning process.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 70

References
[1] J. Traxler, “Defining, discussing, and evaluating mobile learning: The moving finger

writes and having writ….,” International Review of Research in Open and Distance
Learning , vol. 8, no. 2, 2007, pp. 1-12.

[2] Upside Learning, “Mobile learning - a quick start guide.” Retrieved April 5, 2013 from
http://www.upsidelearning.com

[3] A. Heiphetz, “How Mobile Technology Can Enhance Student Learning and Workforce
Training,” 2011. Retrieved from http://www.mcgraw-hillresearchfoundation.org

[4] M. Shanmugapriya and A. Tamilarasia, “Designing an m-learning application for
ubiquitous learning environment in the Android based mobile devices using web services,
Indian Journal of Computer Science and Engineering (IJCSE) , 2011, pp. 22-30.

[5] D. S. Metcalf II and J. M. De Marco, “mLearning: Mobile learning and Performance in the
Palm of Your Hand,” HRD Press, Inc., 2006.

[6] Android Developers, Android Online Documentation. Retrieved March 28, 2013 from
http://developer.android.com

[7] K. Oyibo and M. Hamada, “A Framework for Instantiating Native Mobile Multimedia
Learning Applications on Android Platform,” unpublished.

[8] TechTarget, “Introducing Android.” Retrieved April 8, 2013 from
http://media.techtarget.com/searchMobileComputing/downloads/Introducing_Android.pdf

[9] R. E. Mayer, “Multimedia learning: are we asking the right questions?” Educational
Psychologist, vol. 32, no. 1, pp. 1-19, 1997.

[10] ADL M-learning Guide. Retrieved March 28, 2013 from http://mlearn.adlnet.mobi/

[11] J. Wharton. “Actionbar Sherlock Library.” Retrieved January 3, 2013 from
http://actionbarsherlock.com

[12] T. L. Friedman, “The world is flat: a brief history of the twenty-first century,” April 5,
2005.

[13] R. Kurzweil, Futurist, Handheld Learning '09. The Economic Times and GSM
Association, 2009. Retrieved April 5, 2013 from
http://articles.economictimes.indiatimes.com/2012-02-27/news/31104598_1_mobile-
operators-number-of-mobile-connections-gsma)

[14] Voxxi, “4Afrika looks to cash in on exploding smartphone market in Africa.” Retrieved
March 28, 2015 from http://www.voxxi.com/4afrika-smartphone-market-in-
africa/#ixzz2Omjxjv9g

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 71

[15] B. Coker, “Nigeria ahead smartphones penetration in Africa,” Business Day, Tuesday, 27
November 2013. Retrieved March 28, 2013 from
http://www.businessdayonline.com/NG/index.php/markets/companies-and-market/48068-
nigeria-ahead-smartphones-penetration-in-african

[16] D. Okeytola, “25% of Nigerian mobile subscribers use smartphones–TNS,” Punch,
January 8, 2013. Retrieved March 28, 2013 from
http://www.punchng.com/business/technology/25-of-nigerian-mobile-subscribers-use-
smartphones-tns/

[17] P. B. Muyinda, J. T. Lubega, and K. Lynch, “Mobile learning objects deployment and
utilization in developing countries,” International Journal of Computing and ICT
Research, Special Issue vol. 4, no. 1, pp. 37 - 46.

[18] D. Ayanda, S. Eludiora, , D. Amassoma and M. Ashiru. “Towards a model of e-Learning
in Nigerian higher Institutions: an evolutionary software modeling approach,” Information
and Knowledge Management, vol 1, no. 1, 2011, pp. 1-10.

[19] J. Chimombo, “Issues in basic education in developing countries: an exploration of policy
options for improved delivery,” CICE Hiroshima University, Journal of International
Cooperation in Education, vol. 8, no. 1, 2005 129-152.

[20] Smashing Magazine, “Designing for Android,” Smashing Media GmbH, Fresburg,
Germany, September 2012.

[21] Samsung Developers. “Handling multiple screen size in Android.” Retrieved April 27,
2013 http://developer.samsung.com/android/technical-docs/Handling-Multiple-Screen-
Size-in-Android

[22] R. E. Mayer, “”Cognitive theory of multimedia learning,” In R.E. Mayer (Ed.), The
Cambridge Handbook of Multimedia Learning, New York: Cambridge University Press,
2005.

[23] A. Pocatilu, and A. Pocovnicu, “Multimedia applications and technologies for m-Learning.
Economy Informatics,” vol. 9, no. 1, 2009, p. 64.

[24] P. Doolittle, A. McNeill, K. Terry and S. Scheer, “Multimedia, cognitive load and
pedagogy,” Interactive Multimedia in Education and Training, pp. 184-212, Idea Group
Publishing, USA, 2005.

[25] W. L. Leite, M. Svinicki and Y. Shi, “Attempted validation of the scores of the VARK:
learning styles inventory with multitrait-multimethod confirmatory factor analysis
models,” p 2, SAGE Publications, 2009.

[26] T. F. Hawk and A. J. Shah, “Using Learning Style Instruments to Enhance Student
Learning,” Decision Sciences Journal of Innovative Education, 2007.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 72

[27] LdPride. “What are learning styles?” Retrieved October 17, 2012 from
http://www.ldpride.net/learningstyles.MI.htm

[28] Wikipedia. Retrieved April 12, 2013 from http://wikipedia.org

[29] D. Kolb, “Experiential learning: experience as the source of learning and development,”
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[30] M. Smith, “David A. Kolb on experiential learning,” 2001. Retrieved April 17, 2013, from
http://www.infed.org/biblio/b-explrn.htm

[31] Sun Microsystem, “Model view controller.” Retrieved April 8, 2013 from
http://java.sun.com/blueprints/patterns/MVC-detailed.html

[32] EmirWeb, “Model view controller,” Android Workshop, University of Toronto. Retrieved
May 1, 2013 from http://www.emirweb.com/AndroidTutorial.php

[33] PriceCheck, “Cellular Phones.” Retrieved March 29, 2013, from
http://www.pricecheck.co.za/categories/f/126/Cellular+Phones/f~f/62~269/Samsung~And
roid/0/tp.weekly/DESC/

[34] S. Dowuona, “High bandwidth cost, unfriendly regulations hindering broadband growth in
Africa.” Retrieved March 28, 2013 from
http://business.myjoyonline.com/pages/news/201206/88283.php

[35] H. F. Hanaf, K. Samsudin, “Mobile Learning Environment System (MLES): the case of
Android-based learning application on undergraduates’ learning,” International Journal of
Advanced Computer Science and Applications, vol. 3, no. 3, 2012.

[36] Gartner, “Gartner says worldwide mobile phone sales declined 1.7 percent in 2012.”
Retrieved from March 28, 2013 from http://www.gartner.com/newsroom/id/2335616

[37] G. Kurubacak, “Identify research priorities and needs for mobile learning technologies in
open and distance education: a Delphi study,” College of Open Education, Anadolu
University, Anadolu, 2007.

[38] J. Pettit, and A. Kukulska-Hulme, “Going with the grain: mobile devices in practice,”
Australasian Journal of Educational Technology, vol. 23, no. 1, 2007, pp. 17-33.

[39] F. Motiwalla, “Mobile learning: A framework and evaluation,” In Computers & Education
vol. 49 no. 3, pp. 581-596, 2007.

[40] M. Sharples, J. Taylor, and G. Vavoula, “Towards a theory of mobile learning,” 4th World
Conference on M-learning, 2005, Cape Town, SA.

[41] D. Keegan, “The incorporation of mobile learning into mainstream education and
training,” 4th World Conference on M-learning, 2005, Cape Town, SA.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 73

[42] M. Fayad, and D. Schmidt, “Object-oriented application frameworks. Special issue on
object-oriented application frameworks,” vol. 40, no. 10, October 1997. Retrieved April 8,
2013 from http://www1.cse.wustl.edu/~schmidt/CACM-frameworks.html

[43] DocForge, “Framework,” Software development resources.” Retrieved March 28, 2013
from http://docforge.com/wiki/Framework

[44] UPRM, “Design Patterns.” Retrieved April 8, 2013 from
http://www.ece.uprm.edu/~borges/patterns.pdf

[45] PoinCare, “Model view controller (MVC) architecture.” Retrieved April 8, 2013 from
http://poincare.matf.bg.ac.rs/~andjelkaz/pzv/cas4/mvc.pdf

[46] Rhodes. Retrieved May 2, 2013 from http://www.motorolasolutions.com/US-
EN/RhoMobile+Suite/Rhodes

[47] OpenMobile, “Open source framework for mobile application development.” Retrieved
April 8, 2013 from http://www.openmobileis.org/openmis_about.html

[48] PhoneGap. Retrieved April 8, 2013 from http://phonegap.com/

[49] D. Parsons, H. Ryu and M. Cranshaw, “A design requirements framework for mobile
learning environments,” Journal of Computers, vol. 2, no. 4, June 2007.

[50] A. Mostakhdemin-Hosseini and J. Tuimala, “Mobile learning framework,” IADIS
International Conference Mobile Learning, 2005, p. 205.

[51] T. Leacock and J. Nesbit, “A framework for evaluating the quality of multimedia learning
resources,” Educational Technology & Society, vol. 10 no.2, 2007, pp. 44-59.

[52] C. Diezmann and J. Watters, “A theoretical framework for multimedia resources: a case
from science education,” In Proceedings Australian Association for Research in Education
Conference, Brisbane, 2002.

[53] G. Fenstermacher, “Philosophy of research on teaching: three aspects,” In M. C. Wittrock
(Ed.), Handbook of Research on Teaching, New York: Macmillan, 1986, pp. 37-49.

[54] Moodle. Retrieved April 8, 2013 from http://docs.moodle.org

[55] J. Leyva, “UMM: unofficial Moodle mobile app.” Retrieved April 8, 2013 from
https://moodle.org/plugins/view.php?id=175

[56] Blackboard. Retrieved April 28, 2013 from https://www.blackboard.com

[57] B. Boehm, “A Spiral model of software development and enhancement. ACM Sigsoft
Software Engineering Notes", "ACM", vol. 11 no.4, pp. 14-24, August 1986.

[58] L. Osterweil, “A process programmer looks at the spiral model: a tribute to the deep
insights of Barry W. Boehm,” International Journal of Software and Informatics, vol. 5,
no. 3, 2011, pp. 457. Retrieved April 15, 2013 from http://www.ijsi.org.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 74

[59] NASA, “NASA software safety guidebook,” NASA-GB-8719.13, p.56-57, March 31,
2004.

[60] Berkeley, “Model-view-controller: a design pattern for software,” 2004. Retrieved April 8,
2013 from http://ist.berkeley.edu/as-ag/pub/pdf/mvc-seminar.pdf

[61] Eclipse. Retrieved March 20, 2013 from
http://www.eclipse.org/downloads/moreinfo/jee.php

[62] Android Asset Studio. Retrieved March 20, 2013 from http://android-ui-
utils.googlecode.com/hg/asset-studio/dist/index.html

[63] J. Gilfelt, Android Action Bar Style Generator. Retrieved March 20, 2013 from
http://jgilfelt.github.io/android-actionbarstylegenerator/

.

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 75

Appendix A1
SetupActivity and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 76

Appendix A2
ListModuleFragmentActivity and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 77

Appendix A3
TabModuleFragmentActivity and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 78

Appendix A4
TabFileFragmentActivity and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 79

Appendix A5
Evaluation Activities and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 80

Appendix A6
Search Activities and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 81

Appendix A7
File Handler Activities and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 82

Appendix A8
Utility Activities and Related Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 83

Appendix A9
AppController and Version Class Diagrams

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 84

Appendix B
Content Provider Project Android Manifest

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.contentprovider"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-permission android:name="android.permission.INTERNET" />
 <!-- Keep the screen from dimming or the processor from sleeping,
 or uses the MediaPlayer.setScreenOnWhilePlaying() or
MediaPlayer.setWakeMode()
 methods, you must request this permission. -->
 <uses-permission android:name="android.permission.WAKE_LOCK" />

 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true" />

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name="com.example.contentprovider.SetupActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity
 android:name="com.example.contentprovider.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action
android:name="com.example.contentprovider.MainActivity" />

 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 85

 <activity android:label="@string/activity_name"
android:name="com.austuniaizu.koyham.nmmla.framework.homepage.HomePageFragmen
tActivity" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.homepage.HomePageFragmen
tActivity"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.util.HtmlHandlerActivity
" android:theme="@style/Theme.Styled">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.util.HtmlHandlerActivity
"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.util.AudioHandlerActivit
y" android:theme="@style/Theme.Styled"
 android:screenOrientation="landscape"
android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">>
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.util.AudioHandlerActivit
y"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.util.VideoHandlerActivit
y" android:theme="@style/Theme.Styled"
 android:screenOrientation="landscape"
android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">>
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.util.VideoHandlerActivit
y"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 86

 <activity

android:name="com.austuniaizu.koyham.nmmla.framework.util.ImageHandlerActivit
y"
 android:theme="@style/Theme.Sherlock" >
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.util.ImageHandlerActivit
y" />

 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT" />
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.tabmodule.TabModuleFragm
entActivity" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.tabmodule.TabModuleFragm
entActivity"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"

android:parentActivityName="com.austuniaizu.koyham.nmmla.framework.homepage.H
omePageFragmentActivity"/>
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"

android:value="com.austuniaizu.koyham.nmmla.framework.homepage.HomePage" />

 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.listmodule.ListModuleFra
gmentActivity" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.datamodel.ComponentListF
ragmentActivity"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"

android:parentActivityName="com.austuniaizu.koyham.nmmla.framework.homepage.H
omePageFragmentActivity"/>

 </intent-filter>
 </activity>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 87

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.listmodule.LearnListTabF
ragmentActivityTest" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="comcom.austuniaizu.koyham.mlearnsys.learn.LearnListTabFragmentA
ctivityTest"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"

android:parentActivityName="com.austuniaizu.koyham.nmmla.framework.homepage.H
omePageFragmentActivity"/>
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"

android:value="com.austuniaizu.koyham.nmmla.framework.homepage.HomePage" />
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.tabfile.TabFileFragmentA
ctivity" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">>
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.tabfile.HtmlFragmentActi
vity"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.QuestionActivit
y" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.QuestionActivit
y"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"

android:parentActivityName="com.austuniaizu.koyham.nmmla.framework.homepage.H
omePage"/>
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"

android:value="com.austuniaizu.koyham.nmmla.framework.homepage.HomePage" />
 </intent-filter>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 88

 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.AnswersActivity
" android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.AnswersActivity
"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.ScoreActivity"
android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.evaluate.EndActivity"/>
 <category
android:name="com.austuniaizu.koyham.nmmla.framework.DEFAULT"/>
 </intent-filter>
 </activity>

 <!-- The default activity of the app; displays search results. -->
 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.search.SearchDictionaryA
ctivity"
 android:launchMode="singleTop"
android:theme="@style/Theme.Styled">

 <intent-filter>
 <action
android:name="com.austuniaizu.koyham.nmmla.framework.search.SearchDictionaryA
ctivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

 <!-- Receives the search request. -->
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 <!-- No category needed, because the Intent will specify this
class component-->
 </intent-filter>

 <!-- Points to searchable meta data. -->
 <meta-data android:name="android.app.searchable"
android:resource="@xml/searchable" />

 </activity>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 89

 <!-- Displays the definition of a word. -->
 <activity
android:name="com.austuniaizu.koyham.nmmla.framework.search.WordActivity"
android:theme="@style/Theme.Styled"/>

 <!-- Provides search suggestions for words and their definitions. -->
 <provider
android:name="com.austuniaizu.koyham.nmmla.framework.search.DictionaryProvide
r"

android:authorities="com.austuniaizu.koyham.nmmla.framework.search.Dictionary
Provider" />

 <!-- Points to searchable activity so the whole app can invoke
search. -->
 <meta-data android:name="android.app.default_searchable"
 android:value=".SearchDictionaryActivity" />

 <activity android:name="com.example.myfirstapp.TestActivity"
android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action android:name="com.example.myfirstapp.TestActivity"/>
 <category android:name="com.example.myfirstapp.DEFAULT"/>
 </intent-filter>
 </activity>

 <activity
android:name="com.example.myfirstapp.DisplayMessageActivity"
android:theme="@style/Theme.Styled"

android:configChanges="keyboardHidden|orientation|screenLayout|screenSize|sma
llestScreenSize">
 <intent-filter>
 <action
android:name="com.example.myfirstapp.DisplayMessageActivity"/>
 <category android:name="com.example.myfirstapp.DEFAULT"/>
 </intent-filter>
 </activity>

 </application>

</manifest>

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 90

Appendix C
Content Provider Project SetupActivity

package com.example.contentprovider;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import android.content.Context;
import android.content.Intent;
import android.content.res.AssetManager;
import android.database.SQLException;
import android.os.Bundle;
import android.widget.ImageView;
import com.actionbarsherlock.app.SherlockActivity;
import com.austuniaizu.koyham.nmmla.framework.AppController;
import com.austuniaizu.koyham.nmmla.framework.R;
import com.austuniaizu.koyham.nmmla.framework.datamodel.AtomicComponent;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Component;
import com.austuniaizu.koyham.nmmla.framework.datamodel.ModularComponent;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Content;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Course;
import com.austuniaizu.koyham.nmmla.framework.datamodel.FilesDBHelper;
import com.austuniaizu.koyham.nmmla.framework.datamodel.EvalComponent;
import com.austuniaizu.koyham.nmmla.framework.datamodel.File;
import com.austuniaizu.koyham.nmmla.framework.datamodel.SimComponent;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Theme;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Module;
import com.austuniaizu.koyham.nmmla.framework.datamodel.RenderingMode;
import com.austuniaizu.koyham.nmmla.framework.datamodel.Simulation;
import com.austuniaizu.koyham.nmmla.framework.evaluate.Quiz;
import com.austuniaizu.koyham.nmmla.framework.homepage.CourseBundle;
import com.austuniaizu.koyham.nmmla.framework.homepage.ThemeBundle;
import
com.austuniaizu.koyham.nmmla.framework.homepage.HomePageFragmentActivity;

public class SetupActivity extends SherlockActivity {

 private ImageView imageView;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTheme(AppController.APPLICATION_THEME_TYPE_BLACK);
 /** Set Content View to Splashscreen/Welcome Page Image **/
 setContentView(R.layout.background_image_view);
 imageView = (ImageView) findViewById(R.id.screen_image);
 imageView.setBackgroundResource(R.drawable.bgd_image);

 /**/
 /** File Types for Single or Atomic files not loaded from DB, but
 * specified on this setup page, e.g. About **/
 /***/
 /**

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 91

 * Text - 0 (Used to indicate Search dictionary file)
 * Html - 1
 * Image - 2
 * Audio - 3
 * Video - 4
 **/
/**/
 /** Media Types for Modules being loaded from SQLite DB **/
/**/
 /**
 * Text - 0 (Not used)
 * Html - 1
 * Image - 2
 * Audio - 3
 * Video - 4
 */
/**/
 /**
 * If you prefer to define your own theme bundle, or re-order
 * the default themes, do it as follows; Otherwise you may
 * decide to use the default bundle provided by the framework.
 **/

 Theme theme1 = new Theme(
 AppController.APPLICATION_THEME_NAME_BLUE,
 AppController.APPLICATION_THEME_TYPE_BLUE,
 AppController.MODULE_TAB_THEME_ICON_TYPE_CUBE,
 AppController.MODULE_ITEM_THEME_ICON_TYPE_CUBE_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_BOOK_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_IMAGE_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_AUDIO_PLAYER_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_VIDEO_PLAYER_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_SIMULATION_TERMINAL_BLUE,
 AppController.ITEM_THEME_ICON_TYPE_QUIZ_BLUE,
 AppController.SEQUENCE_ICON_TYPE_ARROW_BACKWARD_BLUE,
 AppController.SEQUENCE_ICON_TYPE_ARROW_FORWARD_BLUE);

 Theme theme2 = new Theme(
 AppController.APPLICATION_THEME_NAME_BLACK,
 AppController.APPLICATION_THEME_TYPE_BLACK,
 AppController.MODULE_TAB_THEME_ICON_TYPE_CUBE,
 AppController.MODULE_ITEM_THEME_ICON_TYPE_CUBE_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_BOOK_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_IMAGE_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_AUDIO_PLAYER_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_VIDEO_PLAYER_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_SIMULATION_TERMINAL_BLACK,
 AppController.ITEM_THEME_ICON_TYPE_QUIZ_BLACK,
 AppController.SEQUENCE_ICON_TYPE_ARROW_BACKWARD_BLACK,
 AppController.SEQUENCE_ICON_TYPE_ARROW_FORWARD_BLACK);

 Theme theme3 = new Theme(
 AppController.APPLICATION_THEME_NAME_GREEN,
 AppController.APPLICATION_THEME_TYPE_GREEN,
 AppController.MODULE_TAB_THEME_ICON_TYPE_CUBE,
 AppController.MODULE_ITEM_THEME_ICON_TYPE_CUBE_GREEN,
 AppController.ITEM_THEME_ICON_TYPE_BOOK_GREEN,

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 92

 AppController.ITEM_THEME_ICON_TYPE_IMAGE_GREEN,
 AppController.ITEM_THEME_ICON_TYPE_AUDIO_PLAYER_GREEN,
 AppController.ITEM_THEME_ICON_TYPE_VIDEO_PLAYER_GREEN,
 AppController.ITEM_THEME_ICON_TYPE_SIMULATION_TERMINAL_GREEN,
 AppController.ITEM_THEME_ICON_TYPE_QUIZ_GREEN,
 AppController.SEQUENCE_ICON_TYPE_ARROW_BACKWARD_GREEN,
 AppController.SEQUENCE_ICON_TYPE_ARROW_FORWARD_GREEN);

 List<Theme> themes = new ArrayList<Theme>();

 themes.add(theme1);
 themes.add(theme2);
 themes.add(theme3);

 ThemeBundle userThemeBundle = new ThemeBundle(
 "Theme", AppController.APPLICATION_THEME_ICON_TYPE_RAINBOW, themes);

/**/ /**
Module Quizzes - Create app's quiz objects **/
/**/

 /** Quiz -- These quizzes will be assigned to modules **/
 // For space only few quiz items as elsewhere, are added
 Quiz module1_quiz = new Quiz("module1_quiz", "Quiz01", 5);
 Quiz module2_quiz = new Quiz("module2_quiz", "Quiz02", 5);

/**/
/** Component - Simulate - List_Item_Simulation **/
/**/
 /**
 * Declare the array list of simulation activities. For now,
 * they are manually added because we have not found a way
 * of converting the class names read as strings from DB to
 * classes of type Class<?> which can be sent an intent
 **/

 /** Create objects of simulation activities **/
 Simulation simulate_activity1 = new Simulation("Sim Topic 1",
 com.example.myfirstapp.TestActivity1.class);
 Simulation simulate_activity2 = new Simulation("Sim Topic 2",
 com.example.myfirstapp.TestActivity2.class);
 Simulation simulate_activity3 = new Simulation("Sim Topic 3",
 com.example.myfirstapp.TestActivity3.class);
 Simulation simulate_activity4 = new Simulation("Sim Topic 4",
 com.example.myfirstapp.TestActivity4.class);

 List<Simulation> listActivities = new ArrayList<Simulation>();
 listActivities.add(simulate_activity1);
 listActivities.add(simulate_activity2);

 List<Simulation> listActivities2 = new ArrayList<Simulation>();
 listActivities2.add(simulate_activity3);
 listActivities2.add(simulate_activity4);

/**/
 /** Component Introduction - One module, TAB MODE **/

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 93

/**/

 //List<File> intro_files = getFilesFromDB(this,"intro_db","Introduction");
 //The above is an alternative to retrieve from DB
 Module intro_module = new Module("Introduction", false,
 getFilesFromFolder("intro_html_folder/module",4),

 null, null, RenderingMode.TAB,1);
 List<Module> intro_module_list = new ArrayList<Module>();
 intro_module_list.add(intro_module);

 Component intro_component = new ModularComponent("Introduction",
 AppController.COMPONENT_IMAGE_INTRO_TYPE_HOUSE_1,
 intro_module_list, RenderingMode.TAB);

/***/
/** Component Learn - Doc **/
/***/

 Module learn_doc_module1 = new Module("Module 1",
 getFilesFromFolder("learn_html_folder/module1",4),
 listActivities, module1_quiz, RenderingMode.LIST,1);
 Module learn_doc_module2 = new Module("Module 2",
 getFilesFromFolder("learn_html_folder/module2",4),
 listActivities2, module2_quiz, RenderingMode.TAB,1);

 /*** Adding all the modules to a list ***/
 List<Module> learn_doc_modules_list = new ArrayList<Module>();
 learn_doc_modules_list.add(learn_doc_module1);
 learn_doc_modules_list.add(learn_doc_module2);

 Component learn_doc_component = new ModularComponent("Learn - Doc",
 AppController.COMPONENT_IMAGE_LEARN_TYPE_BOOK_1,
 learn_doc_modules_list, RenderingMode.LIST);

/***/
/** Component Learn - Video **/
/***/

 Module learn_video_module1 = new Module("Module 1",
 getFilesFromFolder("video_folder/module1",3), null,
 module1_quiz, RenderingMode.LIST,4);
 Module learn_video_module2 = new Module("Module 2",
 learn_video_module2_files, null, module2_quiz,
 RenderingMode.LIST,4);

 /*** Adding all the modules to a list ***/
 List<Module> learn_video_modules_list = new ArrayList<Module>();
 learn_video_modules_list.add(learn_video_module1);
 learn_video_modules_list.add(learn_video_module2);

 Component learn_video_component = new ModularComponent("Learn - Video",
 AppController.COMPONENT_IMAGE_LEARN_TYPE_VIDEO_1,
 learn_video_modules_list, RenderingMode.LIST);

/***/

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 94

/***/
/** Component Learn - Slide **/
/***/

 Module learn_slide_module1 = new Module("Module 1",
 getFilesFromFolder("learn_slide_folder/module1",3),
 null, module1_quiz, RenderingMode.LIST,2);
 Module learn_slide_module2 = new Module("Module 2",
 getFilesFromFolder("learn_slide_folder/module2",3),
 null, module2_quiz, RenderingMode.TAB,2);

 List<Module> learn_slide_modules_list = new ArrayList<Module>();
 learn_slide_modules_list.add(learn_slide_module1);
 learn_slide_modules_list.add(learn_slide_module2);

 Component learn_slide_component = new ModularComponent("Learn - Slide",
 AppController.COMPONENT_IMAGE_LEARN_TYPE_BOOK_2,
 learn_slide_modules_list, RenderingMode.LIST);

/***/
** Component - Evaluate on HP using Reference to "learn_doc_component" **/
/***/

 Component evaluate_component = new EvalComponent("Evaluate",
 AppController.COMPONENT_IMAGE_EVALUATE_TYPE_PEN_PAPER_1,
 (ModularComponent) learn_doc_component);

/***/
/** Component - Simulate on HP using Reference to "learn_doc_component" **/
/***/

 Component simulate_component = new SimComponent("Simulate",
 AppController.COMPONENT_IMAGE_SIMULATE_TYPE_TERMINAL_1,
 (ModularComponent) learn_doc_component);

/***/
/** Component - Resources **/
/***/

 File resources_file = new File ("Resources",
 "resource_html_folder/Resources.html",1);

 Component resources_component = new AtomicComponent("Resources",
 AppController.COMPONENT_IMAGE_RESOURCE_TYPE_BOOK_3,
 resources_file);

/***/
/** Component Help - Single_Module_Html without icon and quiz **/
/***/

 List<File> help_files = getFilesFromDB(this, "help_db", "Help");
 Module module_dbtest = new Module("Help", false, help_files,
 null, null, null, 1);
 List<Module> help_modules_list = new ArrayList<Module>();
 help_modules_list.add(module_dbtest);
 ModularComponent help_component = new ModularComponent("Help",
 AppController.COMPONENT_IMAGE_HELP_GLOSSARY_TYPE_BOOK_1,

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 95

 help_modules_list, RenderingMode.LIST);

/***/
/** Component - Help -- On ActionBar **/
/***/

 ModularComponent help_component_AB = new ModularComponent("Help",
 AppController.APPLICATION_HELP_ICON_TYPE_QUESTION_MARK_LIGHT,
 help_modules_list, RenderingMode.LIST);

/***/
/** Component - About -- On ActionBar **/
/***/

 Content about_file = new File("About",0,"about_html_folder/about.html",1);

 AtomicComponent comp_about = new AtomicComponent("About",
 AppController.APPLICATION_ABOUT_ICON_TYPE_I_CIRCLE_BLUE, about_file);

/***/
/** Component - Search -- On ActionBar **/
/***/

 Content search_file = new File ("definitions", 0,"definitions", 0);
 // The third is used as the text file for the dictionary
 AtomicComponent comp_search = new AtomicComponent("Search",
 AppController.COMPONENT_IMAGE_INTRO_TYPE_HOUSE_1, search_file);

/***/
/** Putting the list of components into Course Object instances **/
/** Note: Same components were added to Course 2 and Course 3 **/
/***/

 List<Component> course1_components = new ArrayList<Object>();
 course1_components.add(intro_component);
 course1_components.add(learn_doc_component);
 course1_components.add(learn_video_component);
 course1_components.add(learn_slide_component);
 course1_components.add(simulate_component);
 course1_components.add(evaluate_component);
 course1_components.add(resources_component);
 course1_components.add(help_component);

 /** Course 2**/
 List<Component> course2_components = new ArrayList<Object>();
 course2_components.add(intro_component);
 course2_components.add(learn_doc_component);
 course2_components.add(learn_video_component);
 course2_components.add(learn_slide_component);
 course2_components.add(simulate_component);
 course2_components.add(evaluate_component);
 course2_components.add(resources_component);
 course2_components.add(help_component);

 /** Course 3 **/
 List<Component> course3_components = new ArrayList<Object>();

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 96

 course3_components.add(intro_component);
 course3_components.add(learn_doc_component);
 course3_components.add(learn_video_component);
 course3_components.add(learn_slide_component);
 course3_components.add(simulate_component);
 course3_components.add(evaluate_component);
 course3_components.add(resources_component);
 course3_components.add(help_component);

 Course course1 = new Course("Automata",course1_components);
 Course course2 = new Course("Compiler",course2_components);
 Course course3 = new Course("Data Structures",course3_components);

 List<Course> courses = new ArrayList<Course>();
 courses.add(course1);
 courses.add(course2);
 courses.add(course3);

 CourseBundle courseBundle = new CourseBundle("Courses",
 AppController.APPLICATION_QUIZ_ICON_TYPE_STAR, courses);

 HomePageFragmentActivity.setAppDatabasePath(
 "/data/data/com.example.contentprovider/databases/");
 HomePageFragmentActivity.setAppPackageName(
 "com.example.contentprovider"); //CP's root package name
 HomePageFragmentActivity.setAppName("NMMLA Framework");
 HomePageFragmentActivity.setAppCourseBundle(courseBundle)
 HomePageFragmentActivity.setAppThemeBundle((userThemeBundle));
 HomePageFragmentActivity.setAbout(comp_about);
 HomePageFragmentActivity.setSearch(comp_search);
 HomePageFragmentActivity.setHelp(help_component_AB);

 Intent intent = new Intent(this, HomePageFragmentActivity.class);
 startActivity(intent);

 // Destroy the activity, which presents a blank splash screen

 finish();
 }

 /** To read files (e.g. HTML, Image) and Quiz items From DB **/

 public static List<File> getFilesFromDB(Context context, String

databaseName, String tableName) throws Error {

 /** DBHelper assists in retrieving items from DB **/

 FilesDBHelper dbHelper = new FilesDBHelper(
 context, databaseName, tableName,
 "/data/data/com.example.contentprovider/databases/");

 try {
 dbHelper.createDataBase(); /** 1. Create DB **/
 } catch (IOException ioe) {
 throw new Error("Unable to create database");
 }
 try {

www.manaraa.com

Master of Science Thesis

Computer Science, AUST 2013 Page 97

 dbHelper.openDataBase(); /** 2. Open DB **/
 }catch(SQLException sqle){
 throw sqle;
 }

 List<File> items = dbHelper.getFileSet();

 /** 3. Get Dataset **/
 dbHelper.close(); /** 4. Close DB **/
 return items;
 }

 /** To read modular files from a folder in asset folder **/

public List<File> getFilesFromFolder(String folderName, int

fileSuffixLength) throws Error {

 AssetManager assetManager = getAssets();
 List<File> module_files = new ArrayList<File>();
 // To get names of all files inside the "folderName"
 try {
 String[] files = assetManager.list(folderName);
 for(int i=0; i<files.length; i++)
 {
 String fileName = files[i].substring(3,
 files[i].length()-(fileSuffixLength+1));
 // to remove suffix e.g ".png"
 File file = new File(fileName,
 folderName+"/"+files[i]);
 module_files.add(file);
 }
 } catch (IOException e1) {
 e1.printStackTrace();
 }

 return module_files;
 }
}

	Title Page.pdf
	Kiemute Oyibo Draft MSc Thesis - Revised 30

